Abolhasan Ameri | Chemical Engineering | Best Researcher Award

Dr. Abolhasan Ameri | Chemical Engineering | Best Researcher Award

KTH Royal Institute of Technology, Sweden

👨‍🎓Profiles

Google  Scholar

🎓 Early Academic Pursuits

Dr. Abolhasan Ameri began his academic journey in Chemical Engineering with a strong foundation built during his undergraduate studies at Shiraz University, Iran. With a curiosity for complex industrial systems and process design, he explored enhanced oil recovery techniques, culminating in a BSc thesis focused on the Steam-Assisted Gravity Drainage (SAGD) process. His early interest in petroleum and energy systems would go on to shape the trajectory of his academic and research career. He continued his graduate studies at the University of Sistan & Baluchestan, where he ranked first among MSc students in the Separation Process specialization. His thesis involved advanced Computational Fluid Dynamics (CFD) simulations, focusing on the hydrodynamics of tray towers and downcomer effects—an experience that gave him a strong command of modeling and simulation tools.

🏢 Professional Endeavors

Dr. Ameri’s professional journey is characterized by a blend of academic leadership, research excellence, and industry collaboration. He has held various impactful roles, notably as an Associate Professor, Head of the Chemical Engineering Department, and currently as a Postdoctoral Researcher at KTH Royal Institute of Technology in Stockholm, Sweden. As a Postdoctoral Researcher at KTH, he leads cutting-edge research in Bio-Energy Carbon Capture and Storage (BECCS), collaborating with Stockholm Exergi. He has designed and fabricated advanced laboratory setups, conducted experimental research on CO₂ capture, and used tools such as ASPEN, MATLAB, and CFD for process simulation and optimization.

🔬 Contributions and Research Focus

Dr. Ameri’s research contributions span a wide range of chemical and environmental engineering challenges. His core areas of focus include:

  • Carbon Capture and Storage (CCS)

  • Renewable energy systems

  • Nanotechnology for water and energy applications

  • Enhanced oil recovery and reservoir engineering

  • Computational modeling using CFD, ASPEN, and COMSOL

At KTH, his BECCS work addresses one of the most critical challenges of our time: reducing carbon emissions while leveraging biomass energy. His experimental and modeling expertise allows him to study flow dynamics, absorption efficiencies, and column design—all critical for scalable carbon capture technologies. Dr. Ameri has also been instrumental in developing experimental facilities for student research, ensuring practical exposure to cutting-edge technologies.

🏆 Accolades and Recognition

Dr. Abolhasan Ameri’s relentless dedication to innovation and sustainability earned him the prestigious Best Researcher Award, recognizing his impactful contributions to Chemical Engineering and environmental research. This award reflects not only his technical achievements but also his commitment to meaningful problem-solving in academia and industry. Throughout his career, he has been awarded research grants, invited to peer-review scientific journals, and acknowledged by academic institutions and industry partners for his collaborative spirit and scientific integrity.

🌍 Impact and Influence

Dr. Ameri’s influence extends across continents—from the Middle East to Scandinavia. As an educator, he has mentored numerous undergraduate, MSc, and PhD students, many of whom have advanced to prominent roles in academia and engineering sectors. His focus on practical skills, critical thinking, and multidisciplinary collaboration has shaped a generation of chemical engineers. He has contributed to projects that improved water access in rural areas, optimized industrial processes, and helped companies integrate greener engineering solutions. His technical mentorship and leadership have fostered vibrant academic and research cultures wherever he has worked.

🧬 Legacy and Future Contributions

Looking ahead, Dr. Ameri is poised to deepen his engagement with climate-resilient engineering and carbon-neutral technologies. His future projects are likely to integrate artificial intelligence, machine learning, and sustainable systems design to further innovate in the areas of carbon capture, renewable energy, and environmental remediation. His ongoing work at KTH and collaborations with European research partners are set to yield new advancements in carbon management strategies and energy efficiency, potentially influencing international policy and industrial best practices.

📖Notable Publications

Modeling and determination of heat transfer coefficient in a basin solar still using CFD

Author: N Setoodeh, R Rahimi, A Ameri

Journal: Desalination 268 (1-3), 103-110

Year:  2011

A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater

Author: S Tamjidi, A Ameri

Journal: Environmental Science and Pollution Research 27 (25), 31105-31119

Year: 2020

Performance assessment of an inclined stepped solar still integrated with PCM and CuO/GO nanocomposite as a nanofluid

Author: H Ajdari, A Ameri

Journal: Journal of Building Engineering 49, 104090

Year: 2022

Donghyuk Kim | Materials Chemistry | Best Researcher Award

Dr. Donghyuk Kim | Materials Chemistry | Best Researcher Award

Korea Institute of Industrial Technology, South Korea

👨‍🎓Profiles

📈 Early Academic Pursuits

He began his academic journey with a strong foundation in Materials Engineering. He completed his Master's degree at Sungkyunkwan University (2002-2004) under the supervision of Professor Young-Jik Kim, where he specialized in New Materials Engineering. His passion for metallurgical advancements led him to pursue a Ph.D. at Kyungpook National University (2013-2018). Under the guidance of Professor Byeong-Jun Ye, his doctoral research culminated in the thesis titled "Study on the Austenite Formation and Oxidation Resistance of AGI (Austempered Gray Cast Iron) According to Aluminum Content". This foundational research paved the way for his expertise in cast iron materials and oxidation resistance, laying a solid groundwork for his professional journey.

💼 Professional Endeavors

He currently holds the position of Senior Researcher in the Mobility Components Group at the Korea Institute of Industrial Technology (KITECH). With a strong background in materials science, he actively contributes to innovative research and development projects focusing on mobility technologies and industrial applications. His role involves leading projects, fostering collaboration, and advancing key components that enhance industrial mobility solutions. Located in Daegu, Republic of Korea, He plays a pivotal role in strengthening Korea's technological edge in manufacturing and materials research.

🔬 Research Focus and Contributions

His research focuses on the microstructure evolution, austenite formation, and oxidation resistance of advanced cast iron materials. His doctoral work on Austempered Gray Cast Iron (AGI) highlighted the critical role of aluminum content in improving material properties, including high-temperature oxidation resistance and enhanced mechanical performance. His contributions extend to: Investigating advanced metallurgical processes, Improving the durability and strength of mobility components, Developing materials with enhanced resistance to environmental factors, His work has broad applications in automotive, aerospace, and industrial manufacturing, addressing challenges in material sustainability and performance optimization.

🔍 Impact and Influence

Through his pioneering research, He has significantly contributed to advancements in metallurgical engineering. His insights into cast iron's microstructure behavior have influenced the development of next-generation materials for industrial applications. As a Senior Researcher at KITECH, he actively mentors junior researchers and collaborates with industry leaders, fostering an environment of innovation. His research not only impacts academic circles but also drives industrial practices, particularly in the mobility and manufacturing sectors.

📅 Academic Citations

His scholarly works are well-recognized in the field of materials engineering. His research findings have been cited in multiple peer-reviewed journals, demonstrating the academic value and practical relevance of his studies. Notably, his contributions to Austempered Gray Cast Iron research remain a reference point for researchers focusing on oxidation resistance and microstructure formation.

🛠️ Technical Skills

He is highly proficient in various technical domains, including: Metallurgical Analysis: Austenite and ferrite formation studies, Materials Characterization: XRD, SEM, TEM, and mechanical testing techniques, Oxidation Resistance Testing: Evaluating material stability at high temperatures, Industrial Application Development: R&D for mobility components and advanced alloys, His technical expertise bridges the gap between theoretical research and practical applications, enabling the development of robust materials.

💼 Teaching and Mentorship

Throughout his academic and professional career, He has been dedicated to mentoring students and junior researchers. His ability to explain complex metallurgical phenomena in practical terms has earned him respect as an effective mentor. By guiding research projects and fostering innovation, he has inspired the next generation of materials scientists to explore sustainable and high-performance materials.

✨ Legacy and Future Contributions

His legacy lies in his impactful research on cast iron materials and their applications in industrial mobility. Moving forward, he remains committed to: Developing eco-friendly and sustainable materials for industrial applications. Enhancing the performance of mobility components through advanced metallurgical processes. Contributing to global collaborations that drive innovation in materials science. As a Senior Researcher, he continues to bridge academic research with industrial advancements, ensuring that his work shapes the future of material engineering and mobility technologies.

📏 Conclusion

His career reflects a seamless blend of academic excellence and professional expertise. From his early academic pursuits to his current role as a Senior Researcher at KITECH, he has consistently contributed to the field of metallurgical engineering. His research, technical skills, and mentorship have left an enduring mark on both academia and industry, positioning him as a leader in advanced materials development and innovation.

📖Notable Publications