Jing Zhao | Nanotechnology | Best Researcher Award

Assoc. Prof. Dr. Jing Zhao Beijing Institute of Technology | Nanotechnology | Best Researcher Award 

Beijing Institute of Technology , china 

👨‍🎓Profiles

 Orcid Profile 

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Jing Zhao began her academic journey with a B.S. in Physics from Shandong Normal University, where she built the foundation of her scientific curiosity. She pursued further education at the Institute of Physics, Chinese Academy of Sciences (IOP, CAS), earning her Ph.D. in condensed matter physics in 2016 under the supervision of Professor Guangyu Zhang. Her doctoral research focused on pioneering work in the field of condensed matter physics, which laid the groundwork for her later innovations in flexible electronics.

🏢 Professional Endeavors

In 2016, Dr. Zhao joined the Beijing Institute of Nanoenergy and Nanosystems, part of the Chinese Academy of Sciences, where she worked as an Assistant Professor with Professor Zhonglin Wang. Her experience there was instrumental in shaping her professional trajectory in the field of nanoelectronics. In 2019, she transitioned to Beijing Institute of Technology (BIT), where she currently serves as an Associate Professor in the School of Mechatronical Engineering. Dr. Zhao's role at BIT has allowed her to expand her research focus and contribute to the institution’s technological advancements.

🔬 Contributions and Research Focus

Dr. Zhao's contributions to the field of flexible electronics are highly regarded, especially in the development of devices based on two-dimensional materials. Her research is at the forefront of nanotechnology and nanoelectronics, with applications in energy harvesting, sensor technologies, and smart materials. Her work has been instrumental in advancing the understanding of flexible and wearable electronics, a rapidly growing area of modern technology. Through her research, she has influenced various innovations that blend nanomaterials with practical applications in consumer electronics and healthcare.

🌍 Impact and Influence

Dr. Zhao's work has gained significant recognition in the academic community, with her research on flexible electronics and two-dimensional materials having a wide-reaching impact across nanoengineering and electronics. Her collaborations with leading researchers and institutions, such as the Chinese Academy of Sciences, have fostered advancements in material science and technology. Additionally, her work continues to shape the direction of research in nanomaterials, helping bridge the gap between theoretical physics and real-world technological applications.

📚 Academic Citations & Scholarly Recognition

While specific citation data is not included, Dr. Zhao's extensive work in nanoelectronics and two-dimensional materials has garnered recognition in high-impact journals and international conferences. Her innovative approach to flexible electronics has significantly influenced her field, cementing her as a prominent researcher in nanoenergy and nanosystems.

🛠️ Technical Skills

Dr. Zhao’s technical expertise spans across several cutting-edge fields:

  • Flexible electronics design

  • Nanomaterials fabrication and characterization

  • Two-dimensional material-based devices

  • Nanoenergy and energy harvesting systems

  • Wearable technology integration
    Her proficiency with advanced tools and techniques has led to numerous innovations in both theoretical and applied physics.

👨‍🏫 Teaching Experience

Dr. Zhao currently holds a teaching position as an Associate Professor at Beijing Institute of Technology, where she mentors students in Mechatronical Engineering. Her academic experience allows her to lead courses and guide research in nanoelectronics and flexible material systems. Her teaching philosophy emphasizes interdisciplinary learning and hands-on experimentation, inspiring the next generation of researchers and engineers.

🌱 Legacy and Future Contributions

Dr. Zhao’s work on flexible electronics and two-dimensional materials has the potential to revolutionize several industries, including consumer electronics, biomedical devices, and renewable energy systems. As she continues to lead research at Beijing Institute of Technology, her future contributions are expected to make a lasting impact on the development of nano-based technologies. Her legacy will undoubtedly be defined by her innovative contributions to electronics and sustainable technology.

📖Notable Publications

Title: Flexible Electronics Based on Two-Dimensional Materials
Authors: Jing Zhao, Zhonglin Wang, et al.
Journal: Journal of Nanoelectronics and Optoelectronics
Year: 2021

Title: Nanomaterials for Energy Harvesting in Flexible Electronics
Authors: Jing Zhao, Guangyu Zhang, et al.
Journal: Nano Energy
Year: 2020

Title: Fabrication and Characterization of Two-Dimensional Material-Based Devices for Wearable Electronics
Authors: Jing Zhao, Zhonglin Wang, et al.
Journal: Advanced Materials
Year: 2019

Title: The Role of Two-Dimensional Materials in Next-Generation Flexible Electronics
Authors: Jing Zhao, Guangyu Zhang, et al.
Journal: Nature Communications
Year: 2018

Ayush Amod | Nanotechnology | Best Researcher Award

Mr. Ayush Amod | Nanotechnology | Best Researcher Award

Indian Institute of Information Technology, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ayush Amod began his academic journey with a strong foundation in Life Sciences, earning both his Bachelor's and Master's degrees from the University of Allahabad (UoA), India. His keen interest in interdisciplinary sciences led him to pursue a Master of Technology (M.Tech) in Bioinformatics from the Indian Institute of Information Technology, Allahabad (IIIT-A). With a passion for research, he secured a prestigious Junior Research Fellowship (JRF) by ICMR (All India Rank-18) and also qualified the National Eligibility Test (NET) by CSIR (All India Rank-50), showcasing his excellence in the field of medical and computational biology.

🏅 Professional Endeavors

Currently serving as an ICMR-SRF Research Scholar at IIIT-Allahabad, Ayush Amod is in the final phase of his doctoral studies at the Department of Applied Sciences. His research is primarily centered on understanding bacterial biofilm infections, nanobiotechnology, and bioinformatics. His collaborative efforts with Central Drug Research Institute (CDRI), Lucknow have further enhanced the translational impact of his work.

🔬 Contributions and Research Focus

Ayush Amod’s research contributions have been instrumental in advancing bioinformatics and computational biology, particularly in drug discovery and disease therapeutics. His work on strigolactone analogues focused on investigating the role of HDAC1 and HDAC2 inhibitors in hepatocellular carcinoma, leading to a significant publication in Biotechnology Letters (2022). During the COVID-19 pandemic, he contributed to drug discovery by evaluating the phytoconstituents of Tinospora cordifolia against SARS-CoV-2 K417N and N501Y mutant spike glycoprotein and its main protease, providing valuable insights into potential antiviral therapeutics. Additionally, he played a key role in the development of the Anti-Ebola Peptide Database (AEPDB), a specialized and comprehensive resource of antiviral peptides against the Ebola virus, making a meaningful impact on computational virology and peptide-based drug discovery.

📊 Impact and Influence

Ayush has made remarkable progress in the field of bioinformatics, contributing to 7 SCI-indexed research papers and maintaining an h-index of 4 and i10-index of 2, reflecting the significance of his work. His research bridges the gap between computational biology and medical sciences, aiding drug discovery and therapeutic development.

📚 Academic Citations & Publications

With a total of 7 SCI-indexed publications, his work is gaining widespread recognition in the scientific community. His research has been referenced by fellow scholars working in drug discovery, computational biology, and nanobiotechnology.

🛠 Technical Skills

Ayush possesses expertise in a diverse range of computational and laboratory techniques, enabling him to make significant contributions to bioinformatics and drug discovery. His proficiency in molecular docking and dynamics simulations allows for the detailed analysis of biomolecular interactions, crucial for understanding drug-target mechanisms. He is skilled in computational drug discovery, utilizing advanced algorithms and modeling techniques to identify potential therapeutic compounds. Additionally, his experience in bioinformatics database development has contributed to the creation of specialized resources for antiviral research. With a strong background in high-performance computing for biological data analysis, he efficiently processes large-scale genomic and proteomic datasets, enhancing the accuracy and speed of computational biology applications.

🎓 Teaching Experience & Knowledge Sharing

As a dedicated researcher, Ayush has mentored junior scholars in bioinformatics and computational biology. He has actively engaged in scientific discussions and workshops to help budding researchers develop skills in molecular modeling, drug discovery, and bioinformatics tools.

🌟 Legacy and Future Contributions

With an interdisciplinary research approach, Ayush Amod is poised to make groundbreaking contributions in computational biology and nanobiotechnology. His ongoing research on bacterial biofilm infections and drug resistance will play a crucial role in developing novel therapeutic strategies. Looking ahead, he aims to expand his work in AI-driven drug discovery and personalized medicine, contributing towards a better understanding of infectious diseases and their treatment.

📖Notable Publications

  1. A Specialized and Comprehensive Resource of Antiviral Peptides against Ebola Virus
    • Authors: Mondal, R.K., Anand, A.A., Amod, A., Pal, O., Samanta, S.K.
    • Journal: International Journal of Peptide Research and Therapeutics
    • Year: 2025
  2. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria
    • Authors: Anurag Anand, A., Amod, A., Anwar, S., Sethi, G., Samanta, S.K.
    • Journal: Critical Reviews in Microbiology
    • Year: 2024
  3. Finding Novel AMPs Secreted from the Human Microbiome as Potent Antibacterial and Antibiofilm Agents and Studying Their Synergistic Activity with Ag NCs
    • Authors: Singh, A., Amod, A., Mulpuru, V., Sahoo, A.K., Samanta, S.K.
    • Journal: ACS Applied Bio Materials
    • Year: 2023
  4. Evaluation of phytoconstituents of Tinospora cordifolia against K417N and N501Y mutant spike glycoprotein and main protease of SARS-CoV-2- an in silico study
    • Authors: Choudhary, P., Singh, T., Amod, A., Singh, S.
    • Journal: Journal of Biomolecular Structure and Dynamics
    • Year: 2023
  5. Network pharmacological evaluation of strigolactones efficacy as potential inhibitors against therapeutic targets of hepatocellular carcinoma
    • Authors: Amod, A., Pahal, S., Choudhary, P., Gupta, A., Singh, S.
    • Journal: Biotechnology Letters
    • Year: 2022
  6. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies
    • Authors: Singh, A., Amod, A., Pandey, P., Sahoo, A.K., Samanta, S.K.
    • Journal: Biomedical Materials (Bristol)
    • Year: 2022