Oleg Mishchenko | Nanotechnology | Best Researcher Award

Mr. Oleg Mishchenko | Nanotechnology | Best Researcher Award

Zaporizhzhia State Medical and Pharmaceutical University, Netherlands

👨‍🎓Profile

🧠 Early Academic Pursuits

Dr. Oleg Mishchenko began his academic journey at the Kharkov National University, Ukraine, where he specialized in dentistry. After earning his Doctor of Philosophy (Ph.D.) in Dentistry in 2015 with a focus on recovery of fractures in the lower fissure between the dentition, he continued his education and training with clinical residency at the Zaporizhzhya Medical Academy of Postgraduate Education, graduating with honors in 2004. This early education provided the foundation for his pioneering work in reconstructive surgeries and dental implantation.

🏥 Professional Endeavors

Dr. Mishchenko is currently a Professor at Zaporozhye Medical and Pharmaceutical University in Ukraine, where he serves as the Head of the Department of Postgraduate Dentistry. In this role, he is responsible for guiding academic research, supervising doctoral students, delivering lectures, and managing the educational curriculum. His dual role as an educator and researcher allows him to bridge the gap between practical medical applications and academic theory, shaping the future of maxillofacial surgery and nanotechnology in medicine.

💡 Contributions and Research Focus

Dr. Mishchenko’s research focus lies at the intersection of biomedicine, nanotechnology, and reconstructive surgery. He is particularly renowned for his innovative approaches in dental implantation, specifically the development of vicarious implants using zirconium alloys, an area he explored in his doctoral dissertation. His work on bioengineering solutions and nanofibers has led to the creation of new materials that enhance tissue engineering, drug delivery systems, and wound coatings for scar prevention and antibacterial properties. His contributions to electrospinning technology are also notable, enabling the development of biomedical materials with gradient porosity, layered structures, and improved mechanical properties.

🌍 Impact and Influence

Dr. Mishchenko’s groundbreaking research has had a significant impact on reconstructive surgery, particularly in dentistry and bioengineering. His work in nanotechnology has enhanced the bio-compatibility of dental implants and other medical devices, while also improving patient outcomes. His research extends to aesthetic surgery, neurosurgery, and cardiac surgery, with his innovations influencing the development of vascular prostheses, nerve conduits, and pericardial plastic surgery. By contributing to both academic research and clinical practice, Dr. Mishchenko has fostered interdisciplinary collaborations that are shaping the future of medical treatments.

📚 Academic Citations

Dr. Mishchenko’s work is highly regarded in the medical and scientific communities, with numerous publications in international journals and a growing citation index. His research has contributed to advancements in bioengineering, implantology, and nanomedicine, making him a recognized authority in these fields. His work has been cited in several influential papers, reflecting the broad impact of his research.

🛠️ Technical Skills

Dr. Mishchenko possesses a vast array of technical skills, particularly in the use of advanced electrospinning equipment for the creation of nanofiber materials. His expertise includes:

  • Electrospinning and Nanofiber Creation: Developing multilayered materials with varying fiber densities, thicknesses, and porosity.

  • Biomedical Applications: Tissue engineering, drug delivery, and wound coatings.

  • Material Engineering: Controlling the mechanical properties, gradients, and combinations of different polymer materials for medical applications.

Additionally, as a co-owner of Nano Prime Sp. Z o.o., Poland, Dr. Mishchenko has access to state-of-the-art facilities, enhancing his technical expertise in these areas.

🎓 Teaching Experience

As the head of the Department of Postgraduate Dentistry, Dr. Mishchenko plays a pivotal role in shaping the next generation of medical professionals. His teaching experience includes:

  • Lecturing on advanced dentistry and maxillofacial surgery techniques.

  • Supervising doctoral dissertations, guiding students through their research in the fields of implantology and bioengineering.

  • Providing mentorship and fostering an environment of innovation, where students are encouraged to explore the integration of nanotechnology into medical practice.

🌱 Legacy and Future Contributions

Dr. Mishchenko’s work has set the stage for future advancements in dental implantology and biomedical engineering. His nanotechnology research will continue to evolve, influencing new medical products in surgery and implantology. Looking ahead, Dr. Mishchenko is committed to:

  • Furthering the development of bioengineered implants for maxillofacial reconstruction.

  • Expanding research into advanced biomaterials for surgical applications in neurosurgery, cardiac surgery, and aesthetic surgery.

  • Mentoring the next generation of researchers in medical sciences and bioengineering, ensuring his legacy lives on in the work of his students.

Dr. Oleg Mishchenko’s diverse range of contributions in nanotechnology, biomedicine, and surgery continues to make a profound impact on the field of medical sciences. His ongoing work promises to revolutionize the future of medical implants, tissue engineering, and reconstructive surgery, while also inspiring future scholars and practitioners.

📖Notable Publications

  • Title: Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures
    Authors: I. Gnilitskyi, M. Pogorielov, R. Viter, A.M. Ferraria, A.P. Carapeto, O. Oleshko, …
    Journal: Nanomedicine: Nanotechnology, Biology and Medicine, 21, 102036
    Year: 2019

  • Title: New Zr-Ti-Nb alloy for medical application: Development, chemical and mechanical properties, and biocompatibility
    Authors: O. Mishchenko, O. Ovchynnykov, O. Kapustian, M. Pogorielov
    Journal: Materials, 13 (6), 1306
    Year: 2020

  • Title: Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation
    Authors: S. Kyrylenko, F. Warchoł, O. Oleshko, Y. Husak, A. Kazek-Kęsik, …
    Journal: Materials Science and Engineering: C, 119, 111607
    Year: 2021

  • Title: Synthetic calcium–phosphate materials for bone grafting
    Authors: O. Mishchenko, A. Yanovska, O. Kosinov, D. Maksymov, R. Moskalenko, …
    Journal: Polymers, 15 (18), 3822
    Year: 2023

  • Title: Ag nanoparticle-decorated oxide coatings formed via plasma electrolytic oxidation on ZrNb alloy
    Authors: O. Oleshko, V. Deineka, V. Korniienko, Y. Husak, O. Mishchenko, …
    Journal: Materials, 12 (22), 3742
    Year: 2019

  • Title: Bio-functionalization of Electrospun Polymeric Nanofibers by Ti3C2Tx MXene
    Authors: S. Kyrylenko, V. Kornienko, O. Gogotsi, O. Oleshko, M. Kolesnyk, …
    Journal: 2020 IEEE 10th International Conference on Nanomaterials: Applications
    Year: 2020

 

Wei Li | Nanotechnology | Best Researcher Award -1724

Prof. Dr. Wei Li | Nanotechnology | Best Researcher Award 

Nanjing University of Posts and Telecommunications, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Wei Li's academic journey began with a solid foundation in physics, graduating with a Bachelor of Science degree in Physics from Nanjing University of Information Science and Technology in 2003. His passion for microelectronics and solid-state electronics led him to pursue a Ph.D. at Nanjing University, where he earned his doctorate in 2008. His early academic pursuits set the stage for his career in optoelectronics, nanomaterials, and sensor technology.

💼 Professional Endeavors

Wei Li's professional trajectory at Nanjing University of Posts and Telecommunications (NUPT) reflects a deep commitment to research and academic excellence. He began his academic career as a lecturer in the College of Electronic Science and Engineering at NUPT in 2008. His dedication and contributions were soon recognized, earning him the position of Associate Professor in 2012, and later a promotion to Professor in 2018. Recently, in 2023, he was appointed as the Director of the Talent Division at the same university, showcasing his leadership skills and focus on talent development within academia.

🔬 Contributions and Research Focus

Wei Li’s research focuses on two major areas: the applications of nanomaterials and nanostructures in optoelectronics, and the development of micro-electromechanical systems (MEMS) for gas sensors. In the realm of nanomaterials, his work has explored innovative materials and structures with unique optical properties, which can be applied in the fields of sensors, photodetectors, and other optoelectronic devices. His research on MEMS for gas sensors has significant implications for environmental monitoring and safety, advancing sensor technology for detecting gases in various industrial and environmental applications.

🌍 Impact and Influence

Wei Li’s research has had a profound impact on the fields of optoelectronics and nanotechnology. His contributions to the development of advanced sensor technologies have helped push the boundaries of gas detection and environmental monitoring. By investigating new materials and innovative approaches, he has influenced both academic research and industrial applications. His collaborations with international institutions, such as UCSD, have further extended the reach and significance of his work in the global scientific community.

📚 Academic Cites

Wei Li’s research has garnered significant attention in the academic world, as evidenced by the increasing number of citations to his work. His publications, particularly in the fields of nanomaterials and optoelectronics, have contributed to the growing body of knowledge in these areas. As a respected researcher in his field, his work is frequently cited by peers, demonstrating its importance and relevance in advancing both fundamental and applied science.

🛠️ Technical Skills

Wei Li possesses a comprehensive range of technical skills that span multiple disciplines within electronic science and engineering. His expertise includes nanomaterials synthesis, fabrication techniques for optoelectronic devices, and MEMS design and implementation. These skills have allowed him to make significant contributions to the development of gas sensors and other optoelectronic devices, further solidifying his standing as a leading researcher in these domains.

👨‍🏫 Teaching Experience

Throughout his academic career, Wei Li has played a pivotal role in mentoring and educating the next generation of engineers and scientists. As a professor at NUPT, he has guided students in the areas of microelectronics, solid-state physics, and optoelectronics. His approach to teaching combines theoretical knowledge with practical applications, helping students bridge the gap between academia and industry. His commitment to fostering talent is evident in his recent appointment as the Director of the Talent Division, where he focuses on nurturing future experts in electronic science and engineering.

🏅 Legacy and Future Contributions

Wei Li’s legacy as a researcher, educator, and leader is already well established. His groundbreaking work in nanomaterials and sensor technology has shaped the direction of research in optoelectronics, while his commitment to teaching ensures that his influence will continue to grow in the coming years. Looking forward, Wei Li plans to expand his research into new frontiers of nanotechnology, exploring the potential for smarter, more efficient sensors and optoelectronic devices. As the Director of the Talent Division, he is also dedicated to building a strong, innovative academic community, ensuring that NUPT continues to be a leading institution in electronic science and engineering.

📖Notable Publications

Technological progress accelerates CO2 emissions peaking in a megacity: Evidence from Shanghai, China

Authors: W. Li, Z. Chen, L. Manchun, Y. Wen

Journal: Sustainable Cities and Society, 2025

Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems

Authors: H. Wang, M. Zhou, X. Jia, Q. Chen, L. Wang

Journal: Journal of Semiconductors, 2025

A Proximity and Tactile Sensor with Visual Multiresponse

Authors: J. Yu, Q. Niu, H. Wu, X. Wang, W. Li

Journal: ACS Applied Materials and Interfaces, 2025

A new approach for methane oxidation: photocatalytic ozonation over noble metal decorated zinc oxide nanocatalysts

Authors: H. Zhang, Y. Wang, J. Zhu, W. Li, L. Mu

Journal: Chemical Synthesis, 2024

Recent advances in enhancing the output performance of liquid-solid triboelectric nanogenerator (L-S TENG): Mechanisms, materials, and structures

Authors: W. Xu, Q. Chen, Q. Ren, Y. Xie, W. Li

Journal: Nano Energy, 2024

First-principles study on the adsorption of gas molecules on Fe, Ti-Doped silicene

Authors: X. Tang, W. Li, W. Xu, Q. Ren, Q. Chen

Journal: Materials Science in Semiconductor Processing, 2024

Constructing Organic Phosphorescent Scintillators with Enhanced Triplet Exciton Utilization Through Multi-Mode Radioluminescence for Efficient X-Ray Imaging

Authors: H. Li, Y. Liu, W. Zhao, R. Chen, W. Huang

Journal: Advanced Materials, 2024

A Signal Amplitude-Insensitive Triboelectric Touch Panel with a Significantly Reduced Signal Channel and Deep-Learning-Enhanced Robustness

Authors: W. Xu, Q. Ren, Q. Chen, X. Li, W. Li

Journal: ACS Applied Materials and Interfaces, 2024

Changes in ecosystem services supply–demand and key drivers in Jiangsu Province, China, from 2000 to 2020

Authors: Y. Wen, L. Manchun, Z. Chen, W. Li

Journal: Land Degradation and Development, 2024

High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in x-cut LNOI ridge waveguide

Authors: Y. Su, X. Zhang, H. Chen, X. Hu, S. Zhu

Journal: Nanophotonics, 2024