Sudipta Dash | Computational Chemistry | Best Researcher Award

Mr. Sudipta Dash | Computational Chemistry | Best Researcher Award

Kalinga Institute of Social sciences | India

Mr. Sudipta Dash is a scholar and academic leader specializing in Applied Physics, with research emphases on quantum optoelectronic materials, carbon‑based nanostructures, functional perovskites, and intelligent instrumentation using IoT and AI technologies. After completing his M.Sc. from Ravenshaw University, he pursued teacher education at Acharya Nagarjuna University, earning his B.Ed and M.Ed. Professionally, Mr. Dash’s career spans roles in higher education and administration: he served as Principal at Gayatri Degree College, Lecturer and then Assistant Professor at Kalinga Institute of Social Sciences, and as of 2024, he is Head of the Department there. He has been recognized with several honours, including CSIR‑NET (2019), GATE (2018), and multiple Best Poster Awards. His inventive work is evidenced by patents in areas like anti‑dandruff/anti‑ripening shampoos; carbon quantum dots; AI‑based digital education methods; and outcome‑based assessment aligned with NEP 2020. His publication record includes studies on perovskite band gap engineering, optoelectronic properties of lead‑free compounds, toxicity assessment of nanomaterials, among others.

Profiles : Scopus | Google Scholar

Featured Publications

  • Dash, S., Behera, D., Mohanty, S. K., Palai, G., & Mohanty, I. (2024). Unveiling the potential of lead‑free KInBr₃ and RbInBr₃ perovskites: A breakthrough in optoelectronic and photovoltaic performance through DFT (HSE hybrid functional) and SCAPS‑1D simulations. Phase Transitions, 97(11‑12), 826–845.

  • Dash, S., Mohanty, S., & Palai, G. (2025). First‑Principles Insights into Structural, Electronic, Elastic, and Optical Behavior of AlGeX₃ (X = Cl, Br) Perovskites. Russian Journal of Inorganic Chemistry, 1–9.

  • Dash, S., Behera, D., Mohanty, S., Panda, J., & Palai, G. (2025). Comprehensive investigations on the optoelectronic properties of lead‑free K₂InSbCl₆ compound. Next Research, Article 100607.

  • Dash, S., Mohanty, S., Behera, D., Mohanty, S. K., & Palai, G. (2025). Band gap engineering and optical response of SrSiO₃ perovskite for high‑efficiency photonic applications. MRS Advances, 1–8.

 

Arnab Banerjee | Quantum Computation of Materials | Best Researcher Award

Assist. Prof. Dr. Arnab Banerjee | Quantum Computation of Materials | Best Researcher Award

Purdue University, United States

👨‍🎓Profiles

🏫 Early Academic Pursuits

He began his academic journey with a passion for material science and technology. His foundational studies emphasized materials synthesis and analytical properties, laying the groundwork for his later groundbreaking contributions to solid-state quantum computing. His academic curiosity drove him to explore quantum magnetism, fostering an interdisciplinary approach that bridges chemistry, physics, and computational sciences.

💼 Professional Endeavors

Currently an Assistant Professor at Purdue University, Dr. Banerjee is an esteemed researcher and faculty member specializing in quantum materials and computing. He actively manages five funded projects supported by the DOE, Keck Foundation, and NSF-IUCRC/Industry, involving advanced quantum chemistry, crystallography, and quantum Hamiltonian modeling using cutting-edge quantum computers. His collaborations with Los Alamos and Oak Ridge National Laboratories and industry leaders like IBM-Q and D-Wave highlight his integration into global research ecosystems.

🌟 Contributions and Research Focus

His research has revolutionized our understanding of quantum materials. Notably, his discovery of the Kitaev candidate material RuCl₃ and the first evidence of magnetic Majorana fermions earned recognition as one of 2016's top science achievements by Discover Magazine. His innovative work links magnetic material modeling, neutron scattering experiments, and quantum computation, published in leading journals such as Physical Review B (Editor's Suggestion), npj Quantum Information, and Nature Communications.

🌍 Impact and Influence

Dr. Banerjee's contributions to quantum computing and magnetism have a global impact. By collaborating with institutions like Caltech and DOE National Labs, he fosters cross-disciplinary innovation. His efforts to integrate quantum computing into material sciences pave the way for achieving higher quantum coherence, driving advancements in both theoretical and applied sciences.

📈 Academic Citations and Recognitions

With 41 peer-reviewed journal articles and a citation index of 28, He is a highly regarded figure in his field. As a guest editor for MDPI's special issue, he contributes to the scientific community by curating cutting-edge research. His expertise and influence are recognized through memberships in the American Physical Society and the Materials Research Society.

🛠 Technical Skills

His technical repertoire includes quantum chemistry, spin density of state measurements, phonon analysis, and advanced neutron scattering techniques. He excels in quantum Hamiltonian modeling using quantum computers, bridging experimental observations with theoretical predictions to accelerate material discoveries.

👩‍🏫 Teaching and Mentorship

As an educator, Dr. Banerjee is dedicated to cross-training students and staff in quantum materials and computing. He collaborates with national laboratories and industries to create immersive learning experiences that prepare the next generation of researchers to tackle forefront scientific challenges.

🌱 Legacy and Future Contributions

He envisions a future where quantum computing and material sciences converge seamlessly. His ongoing research aims to uncover novel materials and phenomena that enhance quantum coherence, bringing quantum computing closer to practical applications. His commitment to mentoring and collaboration ensures a lasting legacy in advancing science and nurturing innovation.

📖Notable Publications

  1. Gibbs state sampling via cluster expansions
  2. Authors: Eassa, N.M.; Moustafa, M.M.; Banerjee, A.; Cohn, J.
    Journal: npj Quantum Information, 2024.
  3. High-fidelity dimer excitations using quantum hardware
  4. Authors: Eassa, N.M.; Gibbs, J.; Holmes, Z.; Cohn, J.; Banerjee, A.
    Journal: Physical Review B, 2024.
  5. Magnetic interactions and excitations in SrMnSb₂
  6. Authors: Ning, Z.; Li, B.; Tang, W.; McQueeney, R.J.; Ke, L.
    Journal: Physical Review B, 2024.
  7. Experimental evidence for nonspherical magnetic form factor in Ru³⁺
  8. Authors: Sarkis, C.L.; Villanova, J.W.; Eichstaedt, C.; Berlijn, T.; Nagler, S.E.
    Journal: Physical Review B, 2024.
  9. Purely antiferromagnetic frustrated Heisenberg model in the spin-ladder compound
  10. Authors: Roll, A.; Petit, S.; Forget, A.; Foury-Leleykian, P.; Balédent, V.
    Journal: Physical Review B, 2023.
  11. Dynamic Asset Allocation with Expected Shortfall via Quantum Annealing
  12. Authors: Xu, H.; Dasgupta, S.; Pothen, A.; Banerjee, A.
    Journal: Entropy, 2023.
  13. Simulations of frustrated Ising Hamiltonians using quantum approximate optimization
  14. Authors: Lotshaw, P.C.; Xu, H.; Khalid, B.; Humble, T.S.; Banerjee, A.
    Journal: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023.
  15. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl₃
  16. Authors: Czajka, P.; Gao, T.; Hirschberger, M.; Nagler, S.E.; Ong, N.P.
    Journal: Nature Materials, 2023.
  17. Distinct Acoustic and Optical Phonon Dependences on Particle Size, Oxidation, and Temperature in Silicon Nanocrystals
  18. Authors: Chen, S.; Coleman, D.; Abernathy, D.L.; Mangolini, L.; Li, C.
    Journal: Journal of Physical Chemistry C, 2022.
  19. Extraction of interaction parameters for α-RuCl₃ from neutron data using machine learning
  20. Authors: Samarakoon, A.M.; Laurell, P.; Balz, C.; Okamoto, S.; Tennant, D.A.
    Journal: Physical Review Research, 2022.