Kai-Jung Chen | Nanotechnology | Research Excellence Award

Assist. Prof. Dr. Kai-Jung Chen | Nanotechnology | Research Excellence Award

Department of Mechanical Engineering, National Chin-Yi University of Technology | Taiwan

Dr. Kai-Jung Chen is an Assistant Professor in the Department of Mechanical Engineering at National Chin-Yi University of Technology, with expertise spanning analytical measurement, intelligent process monitoring, and data-driven modeling for advanced manufacturing systems. He earned his B.E. and M.S. degrees from National Cheng Kung University, Taiwan, and a Ph.D. in Engineering from the University of Liverpool, UK, where he contributed to precision ophthalmic instrumentation as a core member of the Biomechanical Engineering Group. His research has focused on integrating quantitative sensing, acoustic signal analysis, and machine learning to enable real-time diagnostics, condition monitoring, and optimization of grinding and polishing processes. Dr. Chen leads Taiwan government-funded projects on intelligent grinding technologies for compound semiconductor chip materials and green, clean polishing technologies for single-crystal silicon carbide. His work emphasizes improving process reliability, reproducibility, and sustainability in semiconductor and brittle material manufacturing. In parallel, he has contributed to biomedical devices, implantable energy systems, and biomechanical assessment technologies. With extensive industry consultancy experience and multiple granted patents, Dr. Chen bridges academic research and industrial implementation, advancing intelligent, sustainable, and high-precision manufacturing solutions.

Citation Metrics (Scopus)

550
400
250
 100
     0

Citations
413

Documents
24

h-index
7

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Nur Adi Saputra | Nanotechnology | Pioneer Researcher Award

Dr. Nur Adi Saputra | Nanotechnology | Pioneer Researcher Award

Researcher | National Research and Innovation Agency | Indonesia

Dr. Nur Adi Saputra is a distinguished researcher at the National Research and Innovation Agency (BRIN), Indonesia, recognized for his pioneering work in materials science with a particular focus on renewable and sustainable materials derived from biomass. Over his four-year research career, Dr. Saputra has made remarkable strides in developing porous carbon-based materials tailored for energy storage, catalysis, and environmental applications. Holding both a master’s and a Ph.D. in Forestry from Yeungnam University and IPB University, respectively, he has successfully integrated forestry biomass utilization with advanced materials engineering an approach that promotes circular economy principles and green innovation. Dr. Saputra’s scientific contributions are reflected in his 27 publications, which have collectively garnered 81 citations from 77 documents and an h-index of 5 (Scopus). His work on activated carbon for supercapacitor and catalytic applications demonstrates his expertise in controlling surface chemistry and porosity to enhance electrochemical performance. Beyond academic research, he has applied his findings to industrial practice, notably collaborating with PT. NUI HIA PRIMA on large-scale activated carbon production. His inventive approach is further supported by 17 patents (published or under process), showcasing his strong innovation potential in material synthesis and process engineering. As an Editorial Member of the Journal of Soil Science and Agroclimatology, Dr. Saputra contributes to the peer-review process and academic discourse in environmental material applications. He is also engaged in collaborative research with IPB University, Riau University, and international initiatives such as the Southeast Asia–Europe Joint Funding Scheme for Research and Innovation, reflecting his growing global scientific presence. His research not only enhances understanding of carbon material synthesis but also provides practical solutions for sustainable energy technologies. Through his scientific rigor and innovative outlook, Dr. Nur Adi Saputra is emerging as a leading young researcher driving Indonesia’s advancement in renewable materials and green technology.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Saputra, N. A., Pari, G., Priyono, S., Basri, E., Ismanto, A., & Harjadi, B. (2025). Superheated steam-assisted nanoarchitectonics of red calliandra-delivered activated carbon for supercapacitor application. Journal of the Indian Chemical Society, 102, 101894.

Saputra, N. A., Pari, G., Syafii, W., Nawawi, D. S., Maddu, A., Chitraningrum, N., & Priyono, S. (2025). Preparation and application of a novel supercapacitor from chemically activated red calliandra. Materials Chemistry and Physics, 320, 130104.

Subramani, M. C., Budiman, I., Subyakto, S., Chitraningrum, N., & Saputra, N. A. (2025). A review on one-pot multicomponent organic reactions using carbon quantum dots as versatile heterogeneous catalyst. Topics in Catalysis, 68(1–36), 1–36.

Siburian, K. Y., De Nasti, A. N., Sidauruk, E. R., Oktaviano, H. S., Mitan, N. M. M., & Saputra, N. A. (2024). Effect of CoO loading on electrochemical properties of activated carbon from sugarcane bagasse. Journal of Electrochemical Science and Engineering, 14(6), 705–717.

Efiyanti, L., Saputra, N. A., Indrawan, D. A., Pranoto, I. W. B., Hastuti, N., Fadhlulloh, Z., & Budiman, I. (2023). The mesoporous biosilica catalyst from Andong bamboo leaf for direct-pyrolysis reaction. Rasayan Journal of Chemistry, 16(1), 1–10.

Wei Li | Nanotechnology | Best Researcher Award -1724

Prof. Dr. Wei Li | Nanotechnology | Best Researcher Award 

Nanjing University of Posts and Telecommunications, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Wei Li's academic journey began with a solid foundation in physics, graduating with a Bachelor of Science degree in Physics from Nanjing University of Information Science and Technology in 2003. His passion for microelectronics and solid-state electronics led him to pursue a Ph.D. at Nanjing University, where he earned his doctorate in 2008. His early academic pursuits set the stage for his career in optoelectronics, nanomaterials, and sensor technology.

💼 Professional Endeavors

Wei Li's professional trajectory at Nanjing University of Posts and Telecommunications (NUPT) reflects a deep commitment to research and academic excellence. He began his academic career as a lecturer in the College of Electronic Science and Engineering at NUPT in 2008. His dedication and contributions were soon recognized, earning him the position of Associate Professor in 2012, and later a promotion to Professor in 2018. Recently, in 2023, he was appointed as the Director of the Talent Division at the same university, showcasing his leadership skills and focus on talent development within academia.

🔬 Contributions and Research Focus

Wei Li’s research focuses on two major areas: the applications of nanomaterials and nanostructures in optoelectronics, and the development of micro-electromechanical systems (MEMS) for gas sensors. In the realm of nanomaterials, his work has explored innovative materials and structures with unique optical properties, which can be applied in the fields of sensors, photodetectors, and other optoelectronic devices. His research on MEMS for gas sensors has significant implications for environmental monitoring and safety, advancing sensor technology for detecting gases in various industrial and environmental applications.

🌍 Impact and Influence

Wei Li’s research has had a profound impact on the fields of optoelectronics and nanotechnology. His contributions to the development of advanced sensor technologies have helped push the boundaries of gas detection and environmental monitoring. By investigating new materials and innovative approaches, he has influenced both academic research and industrial applications. His collaborations with international institutions, such as UCSD, have further extended the reach and significance of his work in the global scientific community.

📚 Academic Cites

Wei Li’s research has garnered significant attention in the academic world, as evidenced by the increasing number of citations to his work. His publications, particularly in the fields of nanomaterials and optoelectronics, have contributed to the growing body of knowledge in these areas. As a respected researcher in his field, his work is frequently cited by peers, demonstrating its importance and relevance in advancing both fundamental and applied science.

🛠️ Technical Skills

Wei Li possesses a comprehensive range of technical skills that span multiple disciplines within electronic science and engineering. His expertise includes nanomaterials synthesis, fabrication techniques for optoelectronic devices, and MEMS design and implementation. These skills have allowed him to make significant contributions to the development of gas sensors and other optoelectronic devices, further solidifying his standing as a leading researcher in these domains.

👨‍🏫 Teaching Experience

Throughout his academic career, Wei Li has played a pivotal role in mentoring and educating the next generation of engineers and scientists. As a professor at NUPT, he has guided students in the areas of microelectronics, solid-state physics, and optoelectronics. His approach to teaching combines theoretical knowledge with practical applications, helping students bridge the gap between academia and industry. His commitment to fostering talent is evident in his recent appointment as the Director of the Talent Division, where he focuses on nurturing future experts in electronic science and engineering.

🏅 Legacy and Future Contributions

Wei Li’s legacy as a researcher, educator, and leader is already well established. His groundbreaking work in nanomaterials and sensor technology has shaped the direction of research in optoelectronics, while his commitment to teaching ensures that his influence will continue to grow in the coming years. Looking forward, Wei Li plans to expand his research into new frontiers of nanotechnology, exploring the potential for smarter, more efficient sensors and optoelectronic devices. As the Director of the Talent Division, he is also dedicated to building a strong, innovative academic community, ensuring that NUPT continues to be a leading institution in electronic science and engineering.

📖Notable Publications

Technological progress accelerates CO2 emissions peaking in a megacity: Evidence from Shanghai, China

Authors: W. Li, Z. Chen, L. Manchun, Y. Wen

Journal: Sustainable Cities and Society, 2025

Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems

Authors: H. Wang, M. Zhou, X. Jia, Q. Chen, L. Wang

Journal: Journal of Semiconductors, 2025

A Proximity and Tactile Sensor with Visual Multiresponse

Authors: J. Yu, Q. Niu, H. Wu, X. Wang, W. Li

Journal: ACS Applied Materials and Interfaces, 2025

A new approach for methane oxidation: photocatalytic ozonation over noble metal decorated zinc oxide nanocatalysts

Authors: H. Zhang, Y. Wang, J. Zhu, W. Li, L. Mu

Journal: Chemical Synthesis, 2024

Recent advances in enhancing the output performance of liquid-solid triboelectric nanogenerator (L-S TENG): Mechanisms, materials, and structures

Authors: W. Xu, Q. Chen, Q. Ren, Y. Xie, W. Li

Journal: Nano Energy, 2024

First-principles study on the adsorption of gas molecules on Fe, Ti-Doped silicene

Authors: X. Tang, W. Li, W. Xu, Q. Ren, Q. Chen

Journal: Materials Science in Semiconductor Processing, 2024

Constructing Organic Phosphorescent Scintillators with Enhanced Triplet Exciton Utilization Through Multi-Mode Radioluminescence for Efficient X-Ray Imaging

Authors: H. Li, Y. Liu, W. Zhao, R. Chen, W. Huang

Journal: Advanced Materials, 2024

A Signal Amplitude-Insensitive Triboelectric Touch Panel with a Significantly Reduced Signal Channel and Deep-Learning-Enhanced Robustness

Authors: W. Xu, Q. Ren, Q. Chen, X. Li, W. Li

Journal: ACS Applied Materials and Interfaces, 2024

Changes in ecosystem services supply–demand and key drivers in Jiangsu Province, China, from 2000 to 2020

Authors: Y. Wen, L. Manchun, Z. Chen, W. Li

Journal: Land Degradation and Development, 2024

High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in x-cut LNOI ridge waveguide

Authors: Y. Su, X. Zhang, H. Chen, X. Hu, S. Zhu

Journal: Nanophotonics, 2024