Dan Chen | Nanotechnology | Best Researcher Award

Dr. Dan Chen | Nanotechnology | Best Researcher Award

National University of Defense Technology, China

👨‍🎓Profiles

🎓 Educational Background & Career

Dr. Dan Chen is currently an Assistant Professor at the National University of Defense Technology, China. He earned his Ph.D. in Materials Science and Engineering from Huazhong University of Science and Technology, where he also completed his Bachelor’s degree. His academic journey reflects strong expertise in materials science, focused particularly on micro/nano structures, polymer microspheres, photonic crystals, and composites.

🔬 Research Focus & Contributions

Dan’s research primarily explores advanced polymer processing technologies, especially the synthesis and forming mechanisms of polymer nanospheres. He has innovated in rubbery thermoforming technology, advancing the manufacturing of precision polymer optical products with nanoscale control. His work also addresses key challenges in optical materials by developing novel non-melting forming methods that overcome orientation defects like birefringence and optical distortion, improving product precision in demanding optical applications.

🚀 Research Leadership & Projects

Dan has led multiple significant projects including:

  • A Youth Independent Innovation Fund project on non-cooled infrared detectors leveraging heterogeneous core-shell structures for enhanced upconversion luminescence.

  • A Hunan Provincial Young Researcher Fund project on high refractive index inorganic-polymer core-shell nanospheres and new elastic-state forming methods.

  • Innovation Technology and National Natural Science Foundation projects focused on thermoforming and polymer optical product manufacturing, often leading small teams of doctoral and master’s students.

🏆 Awards & Recognitions

He has been recognized with several prestigious honors such as the Fourth Batch of High-level Innovative Talents, Academic Rising Star, and China National Scholarship (a highly selective award given to 0.2% of students). He also earned the title of “Academic Nova” at Huazhong University of Science and Technology and multiple first-class scholarships throughout his studies.

⚙️ Technical Expertise & Innovations

Dan’s technical skillset spans polymer micro/nano fabrication, material modification, and precision forming technologies. He has made notable contributions to industrial applications, such as developing charge-laden masks with an efficient melt-blown process that address environmental and health challenges associated with conventional electrostatic mask filters. His interdisciplinary approach combines material science with practical product design for high-performance applications.

🌟 Impact & Future Directions

Dr. Chen’s work tackles both fundamental science and industry-relevant problems, pushing forward innovative polymer processing methods that enhance optical and functional material properties. His leadership in research projects and collaborative team management underscores his role as an emerging leader in materials science and engineering. Looking ahead, his focus on nano-engineered composites and precision polymer devices is likely to influence fields ranging from optics to biomedical materials.

📖Notable Publications

DEM-bond model: A computational framework for designing mechanically enhanced polymer nanosphere-based ordered nanostructures
Authors: Dan Chen*, §, Zhiren Chen§, Zhihong Zhu, Chucai Guo, et al.
Journal: Materials & Design
Year: 2025

Smart Window with Reversible and Instantaneous Photoluminescence based on Microsphere Structure
Authors: Dan Chen*, §, Yuang Chen§, Zhihong Zhu, Chucai Guo, et al.
Journal: ACS Applied Materials & Interfaces
Year: 2024

Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing
Authors: Tengfang Zhang§, Dan Chen§, Yunming Wang*, Huamin Zhou*, et al.
Journal: Polymers
Year: 2024

Current and Future Trends for Polymer Micro/nano Processing in Industrial Applications
Authors: Dan Chen§, Yunming Wang§, Humin Zhou*, et al.
Journal: Advanced Materials
Year: 2022

Birefringence- and Optical Distortion-free Isotropic Polymer Lens Assisted by Photonic Microspheres
Authors: Dan Chen, Yunming Wang*, Yue Fu, Huamin Zhou*, et al.
Journal: ACS Applied Materials & Interfaces
Year: 2020

Wei Li | Nanotechnology | Best Researcher Award -1724

Prof. Dr. Wei Li | Nanotechnology | Best Researcher Award 

Nanjing University of Posts and Telecommunications, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Wei Li's academic journey began with a solid foundation in physics, graduating with a Bachelor of Science degree in Physics from Nanjing University of Information Science and Technology in 2003. His passion for microelectronics and solid-state electronics led him to pursue a Ph.D. at Nanjing University, where he earned his doctorate in 2008. His early academic pursuits set the stage for his career in optoelectronics, nanomaterials, and sensor technology.

💼 Professional Endeavors

Wei Li's professional trajectory at Nanjing University of Posts and Telecommunications (NUPT) reflects a deep commitment to research and academic excellence. He began his academic career as a lecturer in the College of Electronic Science and Engineering at NUPT in 2008. His dedication and contributions were soon recognized, earning him the position of Associate Professor in 2012, and later a promotion to Professor in 2018. Recently, in 2023, he was appointed as the Director of the Talent Division at the same university, showcasing his leadership skills and focus on talent development within academia.

🔬 Contributions and Research Focus

Wei Li’s research focuses on two major areas: the applications of nanomaterials and nanostructures in optoelectronics, and the development of micro-electromechanical systems (MEMS) for gas sensors. In the realm of nanomaterials, his work has explored innovative materials and structures with unique optical properties, which can be applied in the fields of sensors, photodetectors, and other optoelectronic devices. His research on MEMS for gas sensors has significant implications for environmental monitoring and safety, advancing sensor technology for detecting gases in various industrial and environmental applications.

🌍 Impact and Influence

Wei Li’s research has had a profound impact on the fields of optoelectronics and nanotechnology. His contributions to the development of advanced sensor technologies have helped push the boundaries of gas detection and environmental monitoring. By investigating new materials and innovative approaches, he has influenced both academic research and industrial applications. His collaborations with international institutions, such as UCSD, have further extended the reach and significance of his work in the global scientific community.

📚 Academic Cites

Wei Li’s research has garnered significant attention in the academic world, as evidenced by the increasing number of citations to his work. His publications, particularly in the fields of nanomaterials and optoelectronics, have contributed to the growing body of knowledge in these areas. As a respected researcher in his field, his work is frequently cited by peers, demonstrating its importance and relevance in advancing both fundamental and applied science.

🛠️ Technical Skills

Wei Li possesses a comprehensive range of technical skills that span multiple disciplines within electronic science and engineering. His expertise includes nanomaterials synthesis, fabrication techniques for optoelectronic devices, and MEMS design and implementation. These skills have allowed him to make significant contributions to the development of gas sensors and other optoelectronic devices, further solidifying his standing as a leading researcher in these domains.

👨‍🏫 Teaching Experience

Throughout his academic career, Wei Li has played a pivotal role in mentoring and educating the next generation of engineers and scientists. As a professor at NUPT, he has guided students in the areas of microelectronics, solid-state physics, and optoelectronics. His approach to teaching combines theoretical knowledge with practical applications, helping students bridge the gap between academia and industry. His commitment to fostering talent is evident in his recent appointment as the Director of the Talent Division, where he focuses on nurturing future experts in electronic science and engineering.

🏅 Legacy and Future Contributions

Wei Li’s legacy as a researcher, educator, and leader is already well established. His groundbreaking work in nanomaterials and sensor technology has shaped the direction of research in optoelectronics, while his commitment to teaching ensures that his influence will continue to grow in the coming years. Looking forward, Wei Li plans to expand his research into new frontiers of nanotechnology, exploring the potential for smarter, more efficient sensors and optoelectronic devices. As the Director of the Talent Division, he is also dedicated to building a strong, innovative academic community, ensuring that NUPT continues to be a leading institution in electronic science and engineering.

📖Notable Publications

Technological progress accelerates CO2 emissions peaking in a megacity: Evidence from Shanghai, China

Authors: W. Li, Z. Chen, L. Manchun, Y. Wen

Journal: Sustainable Cities and Society, 2025

Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems

Authors: H. Wang, M. Zhou, X. Jia, Q. Chen, L. Wang

Journal: Journal of Semiconductors, 2025

A Proximity and Tactile Sensor with Visual Multiresponse

Authors: J. Yu, Q. Niu, H. Wu, X. Wang, W. Li

Journal: ACS Applied Materials and Interfaces, 2025

A new approach for methane oxidation: photocatalytic ozonation over noble metal decorated zinc oxide nanocatalysts

Authors: H. Zhang, Y. Wang, J. Zhu, W. Li, L. Mu

Journal: Chemical Synthesis, 2024

Recent advances in enhancing the output performance of liquid-solid triboelectric nanogenerator (L-S TENG): Mechanisms, materials, and structures

Authors: W. Xu, Q. Chen, Q. Ren, Y. Xie, W. Li

Journal: Nano Energy, 2024

First-principles study on the adsorption of gas molecules on Fe, Ti-Doped silicene

Authors: X. Tang, W. Li, W. Xu, Q. Ren, Q. Chen

Journal: Materials Science in Semiconductor Processing, 2024

Constructing Organic Phosphorescent Scintillators with Enhanced Triplet Exciton Utilization Through Multi-Mode Radioluminescence for Efficient X-Ray Imaging

Authors: H. Li, Y. Liu, W. Zhao, R. Chen, W. Huang

Journal: Advanced Materials, 2024

A Signal Amplitude-Insensitive Triboelectric Touch Panel with a Significantly Reduced Signal Channel and Deep-Learning-Enhanced Robustness

Authors: W. Xu, Q. Ren, Q. Chen, X. Li, W. Li

Journal: ACS Applied Materials and Interfaces, 2024

Changes in ecosystem services supply–demand and key drivers in Jiangsu Province, China, from 2000 to 2020

Authors: Y. Wen, L. Manchun, Z. Chen, W. Li

Journal: Land Degradation and Development, 2024

High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in x-cut LNOI ridge waveguide

Authors: Y. Su, X. Zhang, H. Chen, X. Hu, S. Zhu

Journal: Nanophotonics, 2024