Jing Zhao | Nanotechnology | Best Researcher Award

Assoc. Prof. Dr. Jing Zhao Beijing Institute of Technology | Nanotechnology | Best Researcher Award 

Beijing Institute of Technology , china 

👨‍🎓Profiles

 Orcid Profile 

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Jing Zhao began her academic journey with a B.S. in Physics from Shandong Normal University, where she built the foundation of her scientific curiosity. She pursued further education at the Institute of Physics, Chinese Academy of Sciences (IOP, CAS), earning her Ph.D. in condensed matter physics in 2016 under the supervision of Professor Guangyu Zhang. Her doctoral research focused on pioneering work in the field of condensed matter physics, which laid the groundwork for her later innovations in flexible electronics.

🏢 Professional Endeavors

In 2016, Dr. Zhao joined the Beijing Institute of Nanoenergy and Nanosystems, part of the Chinese Academy of Sciences, where she worked as an Assistant Professor with Professor Zhonglin Wang. Her experience there was instrumental in shaping her professional trajectory in the field of nanoelectronics. In 2019, she transitioned to Beijing Institute of Technology (BIT), where she currently serves as an Associate Professor in the School of Mechatronical Engineering. Dr. Zhao's role at BIT has allowed her to expand her research focus and contribute to the institution’s technological advancements.

🔬 Contributions and Research Focus

Dr. Zhao's contributions to the field of flexible electronics are highly regarded, especially in the development of devices based on two-dimensional materials. Her research is at the forefront of nanotechnology and nanoelectronics, with applications in energy harvesting, sensor technologies, and smart materials. Her work has been instrumental in advancing the understanding of flexible and wearable electronics, a rapidly growing area of modern technology. Through her research, she has influenced various innovations that blend nanomaterials with practical applications in consumer electronics and healthcare.

🌍 Impact and Influence

Dr. Zhao's work has gained significant recognition in the academic community, with her research on flexible electronics and two-dimensional materials having a wide-reaching impact across nanoengineering and electronics. Her collaborations with leading researchers and institutions, such as the Chinese Academy of Sciences, have fostered advancements in material science and technology. Additionally, her work continues to shape the direction of research in nanomaterials, helping bridge the gap between theoretical physics and real-world technological applications.

📚 Academic Citations & Scholarly Recognition

While specific citation data is not included, Dr. Zhao's extensive work in nanoelectronics and two-dimensional materials has garnered recognition in high-impact journals and international conferences. Her innovative approach to flexible electronics has significantly influenced her field, cementing her as a prominent researcher in nanoenergy and nanosystems.

🛠️ Technical Skills

Dr. Zhao’s technical expertise spans across several cutting-edge fields:

  • Flexible electronics design

  • Nanomaterials fabrication and characterization

  • Two-dimensional material-based devices

  • Nanoenergy and energy harvesting systems

  • Wearable technology integration
    Her proficiency with advanced tools and techniques has led to numerous innovations in both theoretical and applied physics.

👨‍🏫 Teaching Experience

Dr. Zhao currently holds a teaching position as an Associate Professor at Beijing Institute of Technology, where she mentors students in Mechatronical Engineering. Her academic experience allows her to lead courses and guide research in nanoelectronics and flexible material systems. Her teaching philosophy emphasizes interdisciplinary learning and hands-on experimentation, inspiring the next generation of researchers and engineers.

🌱 Legacy and Future Contributions

Dr. Zhao’s work on flexible electronics and two-dimensional materials has the potential to revolutionize several industries, including consumer electronics, biomedical devices, and renewable energy systems. As she continues to lead research at Beijing Institute of Technology, her future contributions are expected to make a lasting impact on the development of nano-based technologies. Her legacy will undoubtedly be defined by her innovative contributions to electronics and sustainable technology.

📖Notable Publications

Title: Flexible Electronics Based on Two-Dimensional Materials
Authors: Jing Zhao, Zhonglin Wang, et al.
Journal: Journal of Nanoelectronics and Optoelectronics
Year: 2021

Title: Nanomaterials for Energy Harvesting in Flexible Electronics
Authors: Jing Zhao, Guangyu Zhang, et al.
Journal: Nano Energy
Year: 2020

Title: Fabrication and Characterization of Two-Dimensional Material-Based Devices for Wearable Electronics
Authors: Jing Zhao, Zhonglin Wang, et al.
Journal: Advanced Materials
Year: 2019

Title: The Role of Two-Dimensional Materials in Next-Generation Flexible Electronics
Authors: Jing Zhao, Guangyu Zhang, et al.
Journal: Nature Communications
Year: 2018

Wei Li | Nanotechnology | Best Researcher Award -1724

Prof. Dr. Wei Li | Nanotechnology | Best Researcher Award 

Nanjing University of Posts and Telecommunications, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Wei Li's academic journey began with a solid foundation in physics, graduating with a Bachelor of Science degree in Physics from Nanjing University of Information Science and Technology in 2003. His passion for microelectronics and solid-state electronics led him to pursue a Ph.D. at Nanjing University, where he earned his doctorate in 2008. His early academic pursuits set the stage for his career in optoelectronics, nanomaterials, and sensor technology.

💼 Professional Endeavors

Wei Li's professional trajectory at Nanjing University of Posts and Telecommunications (NUPT) reflects a deep commitment to research and academic excellence. He began his academic career as a lecturer in the College of Electronic Science and Engineering at NUPT in 2008. His dedication and contributions were soon recognized, earning him the position of Associate Professor in 2012, and later a promotion to Professor in 2018. Recently, in 2023, he was appointed as the Director of the Talent Division at the same university, showcasing his leadership skills and focus on talent development within academia.

🔬 Contributions and Research Focus

Wei Li’s research focuses on two major areas: the applications of nanomaterials and nanostructures in optoelectronics, and the development of micro-electromechanical systems (MEMS) for gas sensors. In the realm of nanomaterials, his work has explored innovative materials and structures with unique optical properties, which can be applied in the fields of sensors, photodetectors, and other optoelectronic devices. His research on MEMS for gas sensors has significant implications for environmental monitoring and safety, advancing sensor technology for detecting gases in various industrial and environmental applications.

🌍 Impact and Influence

Wei Li’s research has had a profound impact on the fields of optoelectronics and nanotechnology. His contributions to the development of advanced sensor technologies have helped push the boundaries of gas detection and environmental monitoring. By investigating new materials and innovative approaches, he has influenced both academic research and industrial applications. His collaborations with international institutions, such as UCSD, have further extended the reach and significance of his work in the global scientific community.

📚 Academic Cites

Wei Li’s research has garnered significant attention in the academic world, as evidenced by the increasing number of citations to his work. His publications, particularly in the fields of nanomaterials and optoelectronics, have contributed to the growing body of knowledge in these areas. As a respected researcher in his field, his work is frequently cited by peers, demonstrating its importance and relevance in advancing both fundamental and applied science.

🛠️ Technical Skills

Wei Li possesses a comprehensive range of technical skills that span multiple disciplines within electronic science and engineering. His expertise includes nanomaterials synthesis, fabrication techniques for optoelectronic devices, and MEMS design and implementation. These skills have allowed him to make significant contributions to the development of gas sensors and other optoelectronic devices, further solidifying his standing as a leading researcher in these domains.

👨‍🏫 Teaching Experience

Throughout his academic career, Wei Li has played a pivotal role in mentoring and educating the next generation of engineers and scientists. As a professor at NUPT, he has guided students in the areas of microelectronics, solid-state physics, and optoelectronics. His approach to teaching combines theoretical knowledge with practical applications, helping students bridge the gap between academia and industry. His commitment to fostering talent is evident in his recent appointment as the Director of the Talent Division, where he focuses on nurturing future experts in electronic science and engineering.

🏅 Legacy and Future Contributions

Wei Li’s legacy as a researcher, educator, and leader is already well established. His groundbreaking work in nanomaterials and sensor technology has shaped the direction of research in optoelectronics, while his commitment to teaching ensures that his influence will continue to grow in the coming years. Looking forward, Wei Li plans to expand his research into new frontiers of nanotechnology, exploring the potential for smarter, more efficient sensors and optoelectronic devices. As the Director of the Talent Division, he is also dedicated to building a strong, innovative academic community, ensuring that NUPT continues to be a leading institution in electronic science and engineering.

📖Notable Publications

Technological progress accelerates CO2 emissions peaking in a megacity: Evidence from Shanghai, China

Authors: W. Li, Z. Chen, L. Manchun, Y. Wen

Journal: Sustainable Cities and Society, 2025

Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems

Authors: H. Wang, M. Zhou, X. Jia, Q. Chen, L. Wang

Journal: Journal of Semiconductors, 2025

A Proximity and Tactile Sensor with Visual Multiresponse

Authors: J. Yu, Q. Niu, H. Wu, X. Wang, W. Li

Journal: ACS Applied Materials and Interfaces, 2025

A new approach for methane oxidation: photocatalytic ozonation over noble metal decorated zinc oxide nanocatalysts

Authors: H. Zhang, Y. Wang, J. Zhu, W. Li, L. Mu

Journal: Chemical Synthesis, 2024

Recent advances in enhancing the output performance of liquid-solid triboelectric nanogenerator (L-S TENG): Mechanisms, materials, and structures

Authors: W. Xu, Q. Chen, Q. Ren, Y. Xie, W. Li

Journal: Nano Energy, 2024

First-principles study on the adsorption of gas molecules on Fe, Ti-Doped silicene

Authors: X. Tang, W. Li, W. Xu, Q. Ren, Q. Chen

Journal: Materials Science in Semiconductor Processing, 2024

Constructing Organic Phosphorescent Scintillators with Enhanced Triplet Exciton Utilization Through Multi-Mode Radioluminescence for Efficient X-Ray Imaging

Authors: H. Li, Y. Liu, W. Zhao, R. Chen, W. Huang

Journal: Advanced Materials, 2024

A Signal Amplitude-Insensitive Triboelectric Touch Panel with a Significantly Reduced Signal Channel and Deep-Learning-Enhanced Robustness

Authors: W. Xu, Q. Ren, Q. Chen, X. Li, W. Li

Journal: ACS Applied Materials and Interfaces, 2024

Changes in ecosystem services supply–demand and key drivers in Jiangsu Province, China, from 2000 to 2020

Authors: Y. Wen, L. Manchun, Z. Chen, W. Li

Journal: Land Degradation and Development, 2024

High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in x-cut LNOI ridge waveguide

Authors: Y. Su, X. Zhang, H. Chen, X. Hu, S. Zhu

Journal: Nanophotonics, 2024