Tun Naw Sut | Surface Chemistry | Best Researcher Award

Dr. Tun Naw Sut | Surface Chemistry | Best Researcher Award

Sungkyunkwan University | South Korea

Dr. Sut Tun Naw is an accomplished interdisciplinary researcher whose work advances the frontiers of nanotechnology, biomimetic materials, and lipid-based membrane engineering for biomedical and diagnostic applications. With a dual Ph.D. in Nanomedicine from Nanyang Technological University and Chemical Engineering from Sungkyunkwan University, he brings a uniquely integrated perspective to studying molecular interactions at biointerfaces. His research focuses on lipid self-assembly, supported lipid bilayers, membrane biophysics, plasmonic biosensing, antimicrobial nanostructures, and virus–membrane interactions. Dr. Sut’s contributions have significantly deepened scientific understanding of how lipid organization, membrane curvature, cholesterol content, and multivalency govern nanoscale membrane behavior. Using advanced biophysical tools including QCM-D, nanoplasmonic sensing, and engineered membrane platforms he has elucidated mechanisms underlying vesicle deformation, antimicrobial lipid synergy, protein adsorption, and virus-mimicking membrane disruption. His innovative work includes designing lipid bicelle nanostructures for antibacterial applications, developing solvent-free fabrication of antimicrobial lipid nanoparticles, and engineering hybrid supported lipid bilayers for biosensing and antiviral technologies. He has also contributed to translational research through the development of next-generation plasmonic sensor platforms for virus detection, lipid-based coatings for diagnostic assays, and membrane-mimetic structures for therapeutic delivery. With over 50 peer-reviewed publications in high-impact journals such as ACS Nano, Advanced Healthcare Materials, Langmuir, Chemical Engineering Journal, and Applied Materials Today, Dr. Sut has established himself as a leading young scientist in membrane engineering and nanobiotechnology. His roles as Guest Editor and Topic Editor further reflect his influence within the scientific community. Through creativity, rigorous experimentation, and interdisciplinary collaboration, Dr. Sut Tun Naw continues to pioneer breakthroughs with broad implications for diagnostics, virology, nanomedicine, and biomolecular engineering.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Synergistic membrane disruption of E. coli tethered lipid bilayers by antimicrobial lipid mixtures. Biomimetics, 10, 739.

Lee, C. J., Jannah, F., Sut, T. N., Haris, M., & Jackman, J. A. (2025). Curvature-sensing peptides for virus and extracellular vesicle applications. ACS Nano, 19, 36845–36875.

Kim, D., Baek, H., Lim, S. Y., Lee, M. S., Lyu, S., Lee, J., Sut, T. N., Gonçalves, M., Kang, J. Y., Jackman, J. A., & Kim, J. W. (2025). Mechanobiologically engineered mimicry of extracellular vesicles for improved systemic biodistribution and anti-inflammatory treatment efficacy in rheumatoid arthritis. Advanced Healthcare Materials, 14, 2500795.

Molla, A., Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Headgroup-driven binding selectivity of alkylphospholipids to anionic lipid bilayers. Colloids and Surfaces B: Biointerfaces, 255, 114964.

Ruano, M., Sut, T. N., Tan, S. W., Mullen, A. B., Kelemen, D., Ferro, V. A., & Jackman, J. A. (2025). Solvent-free microfluidic fabrication of antimicrobial lipid nanoparticles. ACS Applied Bio Materials, 8, 2194–2203.