Hee-Tae Jung | Materials Chemistry | Best Researcher Award

Prof. Hee-Tae Jung | Materials Chemistry | Best Researcher Award

Korea Advanced Institute of Science and Technology | South Korea

Professor Hee-Tae Jung is a leading global scientist in chemical and biomolecular engineering whose research centers on developing advanced functional nanomaterials and nanostructures to address critical climate-related and environmental challenges. As Chair Professor at KAIST and Director of multiple international research centers including the Saudi Aramco-KAIST CO₂ Management Center and the KAIST-UCB-VNU Global Climate Change Research Center, he leads multidisciplinary teams focused on creating transformative technologies for greenhouse gas mitigation, sustainable energy production, and high-performance sensor systems. His research group, OOEM, pioneers both top-down and bottom-up nanofabrication approaches, introducing innovations such as secondary sputtering, soft-lithography, supramolecular self-assembly, and advanced nano-patterning. These techniques enable precise control of material architectures to achieve unprecedented performance in catalytic, sensing, and energy-conversion applications. A central aim of his work is to bridge fundamental nanoscience with industrial-scale practical devices, accelerating translation of high-impact research into real-world environmental solutions. Professor Jung’s contributions span CO₂ reduction systems, bifunctional water-splitting catalysts, MXene-based gas sensors with ultrahigh signal-to-noise ratios, deep-learning-assisted chemical sensing, high-density nanoparticle generation via carbothermal shock, and large-area supramolecular alignment. His research has been published in top-tier journals including Nature Electronics, Science Advances, Advanced Materials, Nature Nanotechnology, and ACS Nano. With an exemplary record of leadership serving as President of the Korean Environmental Science Society and Associate Editor for several international journals and numerous prestigious awards, Professor Jung is recognized as one of the most influential scientists in nanomaterials, CO₂ management, and climate-centric engineering innovation. His work continues to shape the future of sustainable materials and technologies.

Profiles : ScopusGoogle Scholar

Featured Publications

  • Continuous biochemical profiling of the gastrointestinal tract using a multiparametric smart capsule. (2025). Nature Electronics, 8, 844.

  • Continuous flow-reactor with superior production rate and stability for CO₂ reduction using semiconductor photocatalysts. (2023). Energy & Environmental Science, 16, 2689.

  • Exploring optimal water splitting bifunctional alloy catalyst by Pareto active learning. (2023). Advanced Materials, 35, 2211497.

  • Atomic-scale homogeneous Ru–Cu alloy nanoparticles for highly efficient electrocatalytic nitrogen reduction. (2022). Advanced Materials, 34, 22055270.

  • Generation of high-density nanoparticles in the carbothermal shock method. (2021). Science Advances, 7, eabk2984.

 

T. T. Khaleelul Rahman | Materials Chemistry | Best Researcher Award

Mr. T. T. Khaleelul Rahman | Materials Chemistry | Best Researcher Award

University of Calicut | India

T. T. Khaleelul Rahman is an emerging researcher in the fields of Material Science, Computational Physics, Nanoscience, and Energy Storage Technology, currently pursuing an Integrated M.Sc. in Physics at the University of Calicut, Kerala. His research bridges physics, nanotechnology, and sustainable materials, with a focus on developing advanced polymer nanocomposites for multifunctional applications including optoelectronics, antibacterial systems, and energy-related device engineering. Rahman has contributed to two peer-reviewed international publications, including articles in International Journal of Biological Macromolecules and Journal of Thermoplastic Composite Materials, where he co-developed bio-derived polymer composites reinforced with nanocurcumin and LiAgO-based nanostructures to enhance optical, mechanical, electrical, and antimicrobial properties. His research demonstrates a strong commitment to sustainable nanomaterials and green synthesis for next-generation technologies. His current Scopus metrics reflect 11 citations, 1 h-index, and contributions across 2 indexed documents, emphasizing his early-stage yet impactful scientific engagement. During his academic tenure, Rahman completed a competitive research internship at the Centre for Polymeric Science and Technology, University of Calicut, under the mentorship of Prof. M. T. Ramesan. He has also supported multiple nanocomposite-based research projects involving polymer blends, metal-oxide nanoparticles, and biogenic antimicrobial nanomaterials. His technical competencies span UV-Vis, FTIR, XRD, impedance spectroscopy, MATLAB, Origin, Mathematica, Python, and scientific visualization, strengthening his ability to perform multidisciplinary experimental and computational studies. Beyond research, Rahman is an experienced physics educator, active volunteer, and recipient of notable achievements including the Prof. Joseph Mundassery Scholarship and First Rank in CUCET. With strong academic excellence, proven research capability, and a vision toward sustainable advanced materials, Rahman exemplifies the qualities of a promising young scientist poised to contribute significantly to the scientific community.

Profiles : Scopus | ORCID | Google Scholar 

Featured Publications

Shabah, N. N., Rahman, T. T. K., Gopika, R., & Ramesan, M. T. (2025, July 7). Multifunctional polyvinyl alcohol/maranta arundinacea starch/LiAgO nanocomposites: A sustainable approach for antibacterial and optoelectronic applications. Journal of Thermoplastic Composite Materials.

Ramesan, M. T., Gopika, R., Rahman, T. T. K., Jamsheena, K. T., & Bahuleyan, B. K. (2025, April). Impact of nanocurcumin on mechanical, optical and electrical properties of chitosan/polyvinyl alcohol blend nanocomposites for sustainable applications. International Journal of Biological Macromolecules, 309, 142976.