Jeremie Zaffran | Theoretical Chemistry | Best Researcher Award

Prof. Dr. Jeremie Zaffran | Theoretical Chemistry | Best Researcher Award

Professor at CNRS- (Centre National de la Recherche Scientifique),  France

Profile

🌟 Early Academic Pursuits

Jeremie Zaffran’s academic journey began with distinction, marked by a Bachelor’s degree in Chemistry from Université Paris Diderot-Paris 7, where he graduated cum laude and ranked among the top of his class. He continued his studies with a Master of Science in Materials Science, specializing in Nanosciences, where his exceptional performance earned him a summa cum laude distinction. His doctoral studies at the Ecole Normale Supérieure de Lyon solidified his expertise, culminating in a PhD in Chemistry awarded with the highest distinction. His thesis laid the groundwork for fast predictions of catalytic reactivity in biomass valorization, merging quantum calculations with statistical analysis.

🧑‍🔬 Professional Endeavors

Jeremie’s professional path reflects a global and multidisciplinary perspective. Starting with his postdoctoral fellowship at the Technion in Israel, he delved into computational design for solar water-splitting catalysts, forging collaborations with experimentalists worldwide. As a Research Assistant Professor at ShanghaiTech University, he expanded his expertise in computational catalysis, designing electrocatalysts for renewable energy applications. Currently, as a tenured research fellow at CNRS and part of the E2P2L lab in Shanghai, he focuses on integrating machine learning with computational chemistry to accelerate catalyst design for sustainable industrial processes.

🏗️ Contributions and Research Focus

Jeremie’s contributions span heterogeneous catalysis modeling, renewable energy applications, and advanced computational techniques like DFT and microkinetic simulations. His projects address critical challenges in biomass transformation, solar water splitting, and CO₂ valorization. He has developed machine learning models to predict catalytic activity and mechanisms, reducing the need for exhaustive computational resources. Jeremie’s interdisciplinary approach bridges theoretical insights and practical applications, resulting in innovative solutions for green chemistry.

🏆 Accolades and Recognition

Jeremie’s work has been recognized through numerous awards and honors, such as the prestigious Lady Davis Fellowship and the Grand Technion Energy Program Fellowship. His academic excellence is underscored by distinctions at every level of his education. Furthermore, his leadership in securing competitive grants has brought substantial funding to projects focused on sustainable chemistry, totaling millions in financial support.

🌍 Impact and Influence

Through collaborations with experimental and theoretical groups, Jeremie has shaped the landscape of computational catalysis. His research has influenced industrial partners, such as Solvay, and academic communities alike. With a robust portfolio of high-impact publications, he has contributed to fields ranging from photocatalytic hydrogen production to CO₂ utilization. His leadership in combining artificial intelligence with chemical research positions him as a pioneer in the digital transformation of catalysis.

🔮 Legacy and Future Contributions

Jeremie’s work continues to inspire innovation in green chemistry. By mentoring the next generation of scientists and fostering interdisciplinary collaborations, he is laying the groundwork for a sustainable future. His legacy includes not only his scientific advancements but also his commitment to bridging academic and industrial research, ensuring that his contributions endure for decades to come.

Publication Top Notes

  • “Unveiling the phenol direct carboxylation reaction mechanism at ZrO2 surface”

    • Authors: Kaihua Zhang, Changru Ma, Sebastien Paul, Jeremie Zaffran*
    • Journal: Molecular Catalysis
    • Year: 2024
  • “Photocatalytic dihydroxylation of light olefins to glycols by water”

    • Authors: Chunyang Dong, Yinghao Wang, Ziqi Deng, et al., Jeremie Zaffran, Andrei Y. Khodakov*, Vitaly V. Ordomsky*
    • Journal: Nature Communications
    • Year: 2024
  • “Upgrading the density functional theory with machine learning for the fast prediction of polyaromatic reactivity at bimetallic catalysts”

    • Authors: Jérémie Zaffran*, Minyang Jiao, Raphaël Wischert, Stéphane Streiff, Sébastien Paul
    • Journal: The Journal of Physical Chemistry C
    • Year: 2024
  • “Deoxydehydration of glycerol to allyl alcohol catalyzed by ceria-supported rhenium oxide”

    • Authors: Karen Silva Vargas, Marcia Araque, Jeremie Zaffran, Benjamin Katryniok*, Masahiro Sadakane*
    • Journal: Molecular Catalysis
    • Year: 2023
  • “Direct Photocatalytic Synthesis of Acetic Acid from Methane and CO at Ambient Temperature using Water as Oxidant”

    • Authors: Chunyang Dong, Maya Marinova, Karima Ben Tayeb, et al., Jeremie Zaffran, Andrei Y. Khodakov*, Vitaly V. Ordomsky*
    • Journal: The Journal of the American Chemical Society
    • Year: 2023
  • “Identifying Metal-Halogen bonding for Hydrogen Induced Acid Generation in Bifunctional Catalysis”

    • Authors: Yong Zhou, Martine Trentesaux, Jean-Charles Morin, et al., Jérémie Zaffran*, Vitaly Ordomsky*
    • Journal: ACS Catalysis
    • Year: 2023
  • “Catalytic selective oxidation of isobutane in a decoupled redox-process”

    • Authors: Li Zhang, Jeremie Zaffran, Franck Dumeignil, Sébastien Paul*, Axel Lofberg, Benjamin Katryniok*
    • Journal: Applied Catalysis A: General
    • Year: 2022
  • “Theoretical Insights into the Formation Mechanism of Methane, Ethylene, and Methanol in Fischer-Tropsch Synthesis at Co2C Surfaces”

    • Authors: Jeremie Zaffran*, Bo Yang*
    • Journal: ChemCatChem
    • Year: 2021
  • “First-Principles-Based Microkinetic Simulations of CO2 Hydrogenation to Methanol over Intermetallic GaPd2”

    • Authors: Panpan Wu, Jeremie Zaffran, Bo Yang*
    • Journal: The Journal of Physical Chemistry C
    • Year: 2020
  • “Fast Prediction of Oxygen Reduction Reaction Activity on Carbon Nanotubes with a Localized Geometric Descriptor”

    • Authors: Kunran Yang†, Jeremie Zaffran†, Bo Yang*
    • Journal: Physical Chemistry Chemical Physics
    • Year: 2020

Assist. Prof. Dr. Tuba Cayır Tasdemirci | Physical Chemistry | Best Researcher Award | 1746

Assist. Prof. Dr Tuba Cayır TaSdemirci | Physical Chemistry | Best Researcher Award

Assist. Proffessor at Erzincan Binali Yıldırım University, Turkey

Publication Profile

Early Academic Pursuits 🎓

Tuba Taşdemirci’s journey in academia began with a solid foundation in physics. She earned her Bachelor’s Degree in Physics from Balıkesir University in 2010, where her passion for materials science and engineering took root. Continuing her studies, she pursued a Master’s in Physics at Erzincan University, culminating in a thesis on the growth and characterization of NiO thin films using the SILAR technique in 2012. Her pursuit of knowledge further deepened with a PhD in Biomedical Engineering at Kocaeli University, focusing on the structural and elemental characterization of human cartilage, which she completed in 2018.

Professional Endeavors 👩‍🏫

Tuba’s professional career is marked by her dedication to research and education. Starting as a Research Assistant in Biomedical Engineering at Erzincan University (2013-2016) and Kocaeli University (2016-2019), she laid the groundwork for her expertise in biomaterials. In 2019, she was appointed as an Assistant Professor at Erzincan Binali Yıldırım University, where she also served as Head of the Department of Biomedical Engineering from 2019 to 2021.

Contributions and Research Focus 🔬

Dr. Taşdemirci has made significant strides in the fields of thin-film materials and biomedical engineering. Her research includes the synthesis and characterization of metal oxide thin films and the investigation of their structural, optical, and electrical properties. Her work on SILAR-deposited materials, such as NiO and CuO, has advanced our understanding of semiconductor thin films. Additionally, her studies on the structural and molecular characterization of human cartilage provide insights into osteoarthritis and other degenerative diseases.

Accolades and Recognition 🏆

Dr. Taşdemirci’s contributions have been widely recognized in academia. In 2017, she received the Best Presenter Award, underscoring her ability to communicate complex ideas effectively. Her published works in high-impact journals and participation in numerous international conferences further highlight her influence in the scientific community.

Impact and Influence 🌍

Through her research projects, Tuba has played a pivotal role in advancing materials science and biomedical applications. Her contributions to the study of thin films have implications for fields like electronics, energy, and biomedicine. As a mentor and educator, she has inspired students to explore innovative solutions to scientific and engineering challenges.

Legacy and Future Contributions ✨

With her ongoing research on semiconductor thin films and their applications, Dr. Taşdemirci is poised to leave a lasting legacy in materials science and biomedical engineering. Her leadership in academic and administrative roles reflects her commitment to fostering innovation and collaboration. Looking ahead, her work promises to drive advancements in environmentally sustainable technologies and medical diagnostics, leaving an indelible mark on science and society.

Publication Top Notes : Physical Chemistry
  1. Title: Synthesis of copper-doped nickel oxide thin films: Structural and optical studies
    Author(s): Taşdemirci Tuba
    Journal: Chemical Physics Letters
    Year: 2020

  2. Title: Copper Oxide Thin Films Synthesized by SILAR: Role of Varying Annealing Temperature
    Author(s): Taşdemirci Tuba
    Journal: Electronic Materials Letters
    Year: 2020

  3. Title: Influence of annealing on properties of SILAR deposited nickel oxide films
    Author(s): Taşdemirci Tuba
    Journal: Vacuum
    Year: 2019

  4. Title: Study of the physical properties of CuS thin films grown by SILAR method
    Author(s): Taşdemirci Tuba
    Journal: Optical and Quantum Electronics
    Year: 2019

  5. Title: Effect of Different Thickness and Solution Concentration on CuS Thin Film Grown by SILAR Method
    Author(s): Taşdemirci Tuba
    Journal: Journal of Scientific Perspectives
    Year: 2019

  6. Title: Structural, Elemental and Molecular Characterization of Normal and Osteoarthritic Human Articular Cartilage
    Author(s): Çayır Tuba, Akaltun Yunus, Memişoğlu Kaya, Gündoğdu Özcan
    Journal: Journal of Materials Science and Nanotechnology
    Year: 2017

  7. Title: The effect of wettability on corrosion resistance of oxide films produced by SILAR method on magnesium, aluminum, and copper substrates
    Author(s): Akaltun Yunus, Aslan Mevra, Yetim Tuba, Çayır Tuba, Çelik Ayhan
    Journal: Surface and Coatings Technology
    Year: 2016

  8. Title: Effect of Thickness on Electrical Properties of SILAR Deposited SnS Thin Films
    Author(s): Akaltun Yunus, Astam Aykut, Cerhan Asena, Çayır Tuba
    Journal: 9th International Physics Conference of the Balkan Physical Union (BPU-9)
    Year: 2016

  9. Title: Fabrication and characterization of NiO thin films prepared by SILAR method
    Author(s): Akaltun Yunus, Çayır Tuba
    Journal: Journal of Alloys and Compounds
    Year: 2015