Obinna Chigoziem Akakuru | Environmental Chemistry | Best Researcher Award

Assist. Prof. Dr. Obinna Chigoziem Akakuru | Environmental Chemistry | Best Researcher Award

Federal University of Technology – Owerri, Nigeria

👨‍🎓Profiles

🎓 Early Academic Pursuits

Assist. Prof. Dr. Obinna Chigoziem Akakuru began his academic journey with a strong foundation in the geosciences, focusing on hydrogeology and hydrology during his formative years. His early academic success was marked by securing the prestigious TETFund Full Ph.D. Scholarship in 2014, enabling him to pursue advanced research in groundwater systems and environmental studies. His commitment to academic excellence was further reinforced through the Engr. Emmanuel Iwuanyanwu Grant for Ph.D. studies (2015), which supported his doctoral research in hydrogeochemistry and water resource management.

🧑‍💼 Professional Endeavors

Currently serving as an Assistant Professor at the Federal University of Technology – Owerri, Nigeria, Dr. Akakuru has established himself as a key figure in the geosciences community. His role involves conducting cutting-edge research, mentoring students, and contributing to the advancement of knowledge in water resources and environmental sustainability. His professional career is also marked by collaborations on national and international projects, emphasizing hydrogeological modeling, pollution assessment, and the integration of artificial intelligence (AI) and machine learning (ML) in solving complex environmental problems.

🔬 Contributions and Research Focus

Dr. Akakuru’s research portfolio is interdisciplinary, bridging hydrogeology, hydrology, hydrogeochemistry, and pollution modeling with emerging technologies like artificial intelligence and machine learning. His work addresses pressing issues such as sustainable groundwater management, environmental contamination, and geostatistical modeling for optimal resource utilization. He is particularly renowned for his contributions to groundwater exploitation and management in southeastern Nigeria, a project that secured him a $63,000 grant from the TETFund National Research Fund (2023).

🌍 Impact and Influence

Dr. Akakuru’s research has far-reaching impacts, particularly in regions facing water scarcity and environmental degradation. His models for pollution control and petroleum geology have informed both academic discussions and policy-making decisions. By integrating AI and machine learning techniques into geoscience applications, he has introduced innovative methodologies for groundwater modeling, water quality prediction, and environmental risk assessment, positioning himself as a forward-thinking scholar in the global geoscience community.

📚 Academic Citations

With numerous peer-reviewed publications, Dr. Akakuru’s research is widely cited in hydrogeology, environmental science, and geoinformatics literature. His work is contributing to the growing body of knowledge on sustainable water resource management and pollution modeling, making significant academic contributions to both theoretical and applied research domains.

🛠️ Technical Skills

Dr. Akakuru possesses a diverse technical skill set, including hydrogeological mapping, geostatistical analysis, AI/ML-based environmental modeling, and pollution risk assessment. His expertise extends to the application of software tools for spatial analysis and modeling, such as GIS platforms, statistical software, and machine learning frameworks, enabling data-driven insights into environmental processes.

👨‍🏫 Teaching Experience

As an Assistant Professor, Dr. Akakuru is actively involved in teaching and mentoring undergraduate and postgraduate students in areas such as hydrogeology, water resources management, geostatistics, and environmental science. His pedagogical approach emphasizes critical thinking, research-based learning, and the practical application of geoscientific principles. Many of his students have gone on to make notable contributions in academia and the water resources industry.

🏆 Awards and Recognitions

Dr. Akakuru’s dedication to research excellence has earned him prestigious awards and funding, including the NCIPC Grant (2024) valued at $125,000 annually for five years, for his role in the Fairfield Heritage Prevention Coalition. These recognitions underscore his commitment to community-centered research and public health initiatives.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Akakuru aims to expand his research on climate-resilient groundwater management, AI-powered hydrogeological modeling, and environmental pollution mitigation strategies. He aspires to influence water policy formulation and environmental sustainability practices both in Nigeria and globally. Through his academic and professional journey, Dr. Akakuru continues to inspire the next generation of scientists while driving forward innovative solutions to environmental challenges.

📖Notable Publications

Publication: Hydrogeochemical facies and pollution status of groundwater resources of Owerri and environs, Southeastern Nigeria
Authors: OC Akakuru, B Akudinobi, AI Opara, SO Onyekuru, OU Akakuru
Journal: Environmental Monitoring and Assessment 193, 1-26
Year: 2021

Publication: The chemistry of chitin and chitosan justifying their nanomedical utilities
Authors: OU Akakuru, H Louis, PI Amos, OC Akakuru, EI Nosike, EF Ogulewe
Journal: Biochem Pharmacol (Los Angel) 7 (241), 2167-0501.1000241
Year: 2018

Publication: Hydrogeochemical evolution, water quality indices, irrigation suitability and pollution index of groundwater (PIG) around Eastern Niger Delta, Nigeria
Authors: OC Akakuru, CU Eze, OC Okeke, AI Opara, AO Usman, O Iheme, …
Journal: International Journal of Energy and Water Resources, 1-23
Year: 2022

Publication: Hydrochemical characterization of abandoned quarry and mine water for domestic and irrigation uses in Abakaliki, southeast Nigeria
Authors: MO Eyankware, PN Obasi, OO Omo-Irabor, OC Akakuru
Journal: Modeling Earth Systems and Environment 6, 2465-2485
Year: 2020

Publication: Appraisal of groundwater to risk contamination near an abandoned limestone quarry pit in Nkalagu, Nigeria, using enrichment factor and statistical approaches
Authors: MO Eyankware, OC Akakuru
Journal: International Journal of Energy and Water Resources 7 (4), 603-621
Year: 2023

Xuedong Wang | Toxicology of Metal Elements | Best Researcher Award

Prof. Wang | Toxicology of Metal Elements | Best Researcher Award

Capital Normal University, China

👨‍🎓Profile

📚 Early Academic Pursuits

Xuedong Wang began his academic journey at Hebei Agricultural University, where he completed his Bachelor's in Agricultural Science in 1982. His thesis, "The effect of water-fertilizer coupling on the growth of pakchoi," marked the beginning of his interest in agricultural science and environmental chemistry. His graduate studies continued with a Master’s in Soil Science at Hebei Agricultural University (2005), where he researched "Study on purification of phenol by root pores of wetland plants," combining his interest in environmental issues with soil science. In 2008, he earned a Ph.D. in Environmental Science from Capital Normal University, Beijing, China. His doctoral research, "Development of biotic ligand models predicting copper and zinc toxicity to barley," showcased his focus on understanding environmental pollution and its impact on soil and plant health.

💼 Professional Endeavors

He has held various academic positions at Capital Normal University in Beijing. He started as a Lecturer in 2008, quickly advancing to Associate Professor in 2012. In 2021, he was promoted to Professor, focusing on Soil/Environment Chemistry. His work has expanded beyond teaching into research, having been involved in various projects related to soil health and environmental sustainability. Dr. Wang has also worked as a Senior Visiting Scholar at the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) at the University of Newcastle in Australia in both 2014 and 2019-2020, collaborating on global environmental issues.

🔬 Contributions and Research Focus

His research has had a significant impact on the field of soil/environment chemistry. He has developed predictive models to understand the ecological risk thresholds for heavy metals in soils, contributing to better environmental remediation practices. His machine learning model for element ecological risk threshold prediction (2024-2027) and other projects on soil microbial biomass, heavy metal pollution in farmland, and soil heavy metal contamination reflect his deep commitment to addressing pressing environmental issues. His work on the ecological toxicity prediction model of soil metal elements is crucial for understanding how soil quality can be influenced by metal pollution.

🌍 Impact and Influence

His influence extends beyond his university through his contributions to environmental monitoring and management projects, particularly in China. His research on the remediation of polluted water bodies and heavy metal pollution in soil has contributed to policy development and practical applications for environmental cleanup. His participation in global research, including his visiting scholar positions in Australia, has facilitated international collaboration on environmental issues. His work has helped raise awareness about the importance of soil health in maintaining ecological balance.

📚 Academic Cites and Recognition

Although specific citation numbers are not mentioned, His extensive involvement in research projects and collaborations suggests that his contributions are well-regarded within the field of environmental science and soil chemistry. His ongoing work on projects related to soil pollution, heavy metal toxicity, and machine learning applications will likely continue to garner academic attention and recognition.

🧑‍🏫 Teaching Experience

As a professor at Capital Normal University, He has shaped the next generation of environmental scientists. He has taught courses related to soil/environment chemistry, imparting knowledge on both the scientific fundamentals and their application in real-world environmental issues. His students benefit from his research expertise, which he integrates into his teaching, making his classes valuable for aspiring professionals in the field.

🌱 Technical Skills

He has developed a broad range of technical skills over his career, including expertise in environmental modeling, soil chemistry analysis, heavy metal contamination, and biological toxicity prediction. His work integrates advanced machine learning techniques with environmental science, showcasing his proficiency in modern computational tools for environmental analysis.

🏆 Legacy and Future Contributions

He legacy lies in his continued commitment to environmental protection and soil sustainability. His current and future projects, such as the development of ecological toxicity prediction models and the remediation of contaminated water bodies, will contribute to improving both local and global environmental health. As a professor, his impact will also be felt through his students, many of whom will carry his research insights into their professional careers.

🔮 Future Contributions

Looking ahead, His focus on using machine learning for environmental science will likely expand. The construction of predictive models for soil health and pollution thresholds has the potential to revolutionize environmental management practices. His future work will continue to focus on the intersection of ecological risk, sustainability, and technological innovation, potentially contributing to more effective global environmental strategies.

📖Notable Publications