Jun Dang | Analytical Chemistry | Analytical Chemistry Award

Assoc. Prof. Dr. Jun Dang | Analytical Chemistry | Analytical Chemistry Award

Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China

👨‍🎓Profiles

🏫 Early Academic Pursuits

He pursued his passion for natural product chemistry and Tibetan medicine during his formative academic years. His early work focused on exploring the unique biodiversity of the Qinghai-Tibet Plateau, setting the foundation for his lifelong dedication to the chemical biology of natural products. His advanced studies led him to a role as a master’s advisor and eventually to his appointment as an associate researcher at the Northwest Institute of Plateau Biology, Chinese Academy of Sciences.

💼 Professional Endeavors

He currently serves as the Deputy Director of the Qinghai Provincial Key Laboratory of Tibetan Medicine Research. He is an active member of the Ethnic Medicine Committee of the Chinese Pharmaceutical Association and a Director of the Qinghai Pharmaceutical Association. Recognized for his contributions to natural sciences, he has been inducted into prestigious programs, including the Youth Innovation Promotion Association of the Chinese Academy of Sciences and Qinghai Province’s Kunlun Talents∙High-End Innovation and Entrepreneurship Talents Program.

🌟 Contributions and Research Focus

He specializes in the accurate discovery of functional components from the Qinghai-Tibet Plateau's unique biological resources. His innovative methods target protein agonists or inhibitors, elucidating molecular mechanisms for disease intervention. Through these pioneering studies, he bridges chemical biology with practical health applications, enriching the field with novel approaches to isolating and purifying bioactive compounds.

🌍 Impact and Influence

With 47 SCI-indexed publications and 26 granted Chinese national invention patents, Dr. Dang’s research has profoundly impacted both academia and industry. His 1150 citations, averaging 15.13 citations per article, highlight the relevance of his work. Additionally, his leadership in enterprise projects demonstrates a strong connection between scientific discovery and economic benefit, advancing pharmaceutical and biotech industries.

📚 Academic Cites and Publications

His academic contributions include 76 publications, of which 47 are SCI-indexed papers authored or co-authored as the first or corresponding author. These articles span innovative discoveries in bioactive compounds, contributing significantly to chemical biology and natural product research. He also served as the lead editor for a special issue on bioactive compounds and their molecular mechanisms against diseases.

🛠️ Technical Skills

His expertise encompasses advanced techniques in natural product chemistry, protein expression, and molecular biology. He has mastered isolating bioactive compounds and identifying their therapeutic targets, applying enzymatic, cellular, and animal model evaluations to ensure robust results.

👨‍🏫 Teaching and Mentorship

As a dedicated mentor, Dr. Dang has guided numerous master’s students, fostering the next generation of researchers in natural product chemistry and Tibetan medicine. His leadership extends beyond academia, where he collaborates with national and international researchers, amplifying the reach of his mentorship.

🎯 Legacy and Future Contributions

He envisions a future where the rich biodiversity of the Qinghai-Tibet Plateau is harnessed to solve global health challenges. By focusing on molecular mechanisms of disease intervention, he aims to create impactful, sustainable solutions in pharmaceuticals and natural medicine. His innovative methods and collaborative efforts ensure that his legacy will inspire ongoing advancements in chemical biology and natural product research.

📖Notable Publications

  1. Practically complementary size exclusion chromatography and reversed-phase liquid chromatography for the preparative separation of structurally similar flavone-C-glycosides
    • Authors: Dang, J., Lv, Y., Abd. El-Aty, A.M., Li, G.
    • Journal: Journal of Chromatography A
    • Year: 2025
  2. Isolation of highly polar galloyl glucoside tautomers from Saxifraga tangutica through preparative chromatography and assessment of their in vitro antioxidant activity
    • Authors: Tong, Y., Chu, M., Zhou, J., Abd El-Aty, A.M., Dang, J.
    • Journal: BMC Chemistry
    • Year: 2024
  3. Innovative orthogonal two-dimensional reversed-phase liquid chromatography × supercritical fluid chromatography with a phenyl/tetrazole stationary phase for the preparative isolation of diarylheptanoids
    • Authors: Dang, J., Tong, Y., Wang, Q., Li, G., Abd El-Aty, A.M.
    • Journal: Journal of Chromatography A
    • Year: 2024
  4. Protection against myocardial ischemia/reperfusion injury in mice by 3-caffeoylquinic acid isomers isolated from Saxifraga tangutica
    • Authors: Tong, Y., Li, G., Shi, X., Abd El-Aty, A.M., Dang, J.
    • Journal: RSC Advances
    • Year: 2024
  5. Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism
    • Authors: Lin, Z., Zhou, X., Yuan, C., Dang, J., Li, G.
    • Journal: Molecules
    • Year: 2024
  6. An Integrated Strategy for Investigating Antioxidants from Ribes himalense Royle ex Decne and Their Potential Target Proteins
    • Authors: Liu, C., Lei, Y., Liu, Y., Dang, J., Wu, M.
    • Journal: Antioxidants
    • Year: 2023
  7. Medium- and High-Pressure Integrated Chromatographic Strategies for the Isolation and Purification of Free Radical Inhibitors from Dracocephalum heterophyllum
    • Authors: Lv, Y., Wang, Z., Wang, Q., Dang, J.
    • Journal: Separations
    • Year: 2022
  8. Preparative isolation of antioxidative furanocoumarins from Dracocephalum heterophyllum and their potential action target
    • Authors: Lv, Y., Li, C., Wang, Z., Li, G., Dang, J.
    • Journal: Journal of Separation Science
    • Year: 2022
  9. Integrated chromatographic approach for the discovery of gingerol antioxidants from Dracocephalum heterophyllum and their potential targets
    • Authors: Dang, J., Lv, Y., Li, C., Li, G., Wang, Q.
    • Journal: Analytical Methods
    • Year: 2022
  10. Ethyl Acetate Extract of Dracocephalum heterophyllum Benth Ameliorates Nonalcoholic Steatohepatitis and Fibrosis via Regulating Bile Acid Metabolism, Oxidative Stress and Inhibiting Inflammation
    • Authors: Fang, Y., Sun, D., Li, G., Wang, Q., Dang, J.
    • Journal: Separations
    • Year: 2022

 

Rajendar Burki | Analytical Chemistry | Best Researcher Award

Dr. Rajendar Burki | Analytical Chemistry | Best Researcher Award

Biological E Limited, India

👨‍🎓Profiles

👨‍🎓 Early Academic Pursuits

His academic foundation began with a Bachelor of Science in Microbiology and Chemistry from Kakatiya University, India, which he completed in April 2000. His educational journey continued with a Master of Science in Analytical Chemistry from NIT Warangal (Deemed University), awarded. He further advanced his knowledge and expertise by earning a Ph.D. in Bioanalytical/Biological Chemistry from Tohoku University, Japan. His doctoral and postdoctoral experiences equipped him with the rigorous scientific acumen required for pioneering work in protein biochemistry and analytical research.

💼 Professional Endeavors

He has a distinguished career spanning over two decades, marked by leadership and significant contributions in the field of vaccine research and development. Since, he has been with Biological E Limited in Hyderabad, where he serves as Vice President of Research and Development. In this capacity, he leads a team of over 30 scientists and plays a crucial role in vaccine R&D, encompassing recombinant proteins, bacterial, viral, and VLP vaccines. His experience includes product development from initial concepts to late-stage clinical material manufacturing (CMC expertise), process development, analytical sciences, and biophysical analysis.

🌟 Key Roles and Responsibilities

Regulatory Expertise: Dr. Burki has spearheaded regulatory documentation and submissions for various vaccine projects, ensuring thorough analytical and process development. Team and Resource Management: He excels in building and managing skilled teams, overseeing space planning, budget allocation, and resource optimization. Documentation and Compliance: Authored and reviewed critical documents including MFRs, BPRs, SOPs, and reports on method development, qualification, and validation.

🏆 Contributions and Achievements

He has led numerous groundbreaking projects in vaccine development that have significantly impacted public health. His notable achievements include: Approval and Development: Instrumental in obtaining PCV vaccine approval for Biological E, Methodology Development: Created and validated analytical methods for bacterial and viral vaccines, Process Engineering: Pioneered conjugation and downstream processes for mono-conjugate preparation, Formulation Optimization: Designed and enhanced formulations for various vaccine types, Technology Transfer: Successfully managed the transfer of processes and analytical methods to production and quality control units, Regulatory Success: Played an essential role in preparing technical packages for submissions to PCT (RCGM), CDSCO, WHO, and FDA.

🧪 Research Focus and Impact

His research is highly focused on the fields of protein expression, characterization, and vaccine development. His early career work at the University of Alabama at Birmingham involved exploring the molecular mechanisms of the ClpA molecular chaperone, including protein cloning, expression, purification, and binding analysis of peptide substrates. This foundational work in biophysical chemistry has contributed to his later expertise in analytical and biophysical methods, particularly for characterizing complex biological molecules.

📚 Academic Citations and Recognition

His contributions have earned him recognition and accolades, underscoring his influence in the scientific community: JST Doctoral Fellowship: Awarded during his Ph.D. program, showcasing his academic prowess, Postdoctoral Fellowship: Secured for advanced research at the University of Alabama, Biopharma Leadership Award (2022): Presented by Bluetech Media in acknowledgment of his leadership in the biopharmaceutical industry, FDD Leaders Award (2023): Honored by Express Pharma, recognizing his exceptional leadership and impact in vaccine development.

💻 Technical Skills

He is highly skilled in a range of analytical and biophysical techniques, essential for protein characterization and vaccine development: Chromatography: Proficient in protein expression, purification, and analysisSpectroscopy and Fluorescence Studies: Used for in-depth biochemical investigations, Enzyme Kinetics: Applied for understanding enzyme functionality, Analytical Method Development: Expertise in developing and validating methods for both small molecules and large biomolecules.

🎓 Teaching Experience

Throughout his career, Dr. Burki has shared his expertise through mentoring and training in analytical techniques and biophysical methodologies. His experience as a postdoctoral researcher included training peers and contributing to research team learning in protein analysis and purification techniques.

🌱 Legacy and Future Contributions

His leadership at Biological E Limited and his prior work have cemented his legacy as a trailblazer in vaccine R&D and analytical biochemistry. Looking ahead, his goal is to continue advancing the science of vaccine development and contribute to global health through innovative research and fostering the next generation of scientific leaders. With his expertise, he is set to influence future developments in vaccine technology, analytical methodologies, and cross-disciplinary collaboration.

📖Notable Publications

 

 

 

 

 

 

 

 

Kwang Hoe Kim | Analytical Chemistry | Best Researcher Award

Dr. Kwang Hoe Kim | Analytical Chemistry | Best Researcher Award

Cellkey Inc, South Korea

👨‍🎓Profile

🎓 Early Academic Pursuits

Dr. Kwang Hoe Kim’s academic journey began at Chungnam National University, South Korea, where he completed his Bachelor’s degree in Chemistry in March 2009. This foundational training in the sciences paved the way for his later research. In 2010, he advanced to the Graduate School of Analytical Science and Technology at the same institution, earning a Master’s degree (M.S.) in February 2012. Under the guidance of Professor Jong Shin Yoo, he developed key skills in mass spectrometry and glycoproteomics. He continued to build on this expertise, earning his Ph.D. in 2019, further honing his skills in mass spectrometry and biomarker discovery.

🧪 Professional Endeavors

Dr. Kim’s professional journey has been marked by his leadership in advancing the field of bioanalytical research, particularly in oncology. In January 2021, he took on the role of Head of the Bio R&D Center at CellKey, where he focuses on the development of diagnostic biomarkers for cancer detection and management. His work also includes advancing companion diagnostics in immuno-oncology, leveraging mass spectrometry for clinical applications. Prior to this, he worked as a Postdoctoral Researcher at the Korea Basic Science Institute, where he made significant contributions to the detection of hepatocellular carcinoma, a leading form of liver cancer.

🔬 Contributions and Research Focus

Dr. Kim’s research has been deeply focused on the application of mass spectrometry for cancer diagnosis and biomarker discovery. His work includes developing liquid chromatography-mass spectrometry-based methods to identify cancer-associated proteins and glycoproteins. At the Research Center for Bioconvergence Analysis, he worked on developing a multi-biomarker panel for hepatocellular carcinoma detection, using mass spectrometry to enhance diagnostic sensitivity. His work in optimizing immunoprecipitation/targeted mass spectrometry methods has made significant contributions to the analytical sensitivity of peptide and glycopeptide analyses.

🌍 Impact and Influence

Dr. Kim’s work has had a notable impact on both the scientific community and clinical applications. His research into mass spectrometry-based diagnostic methods has helped pave the way for more accurate and sensitive detection of cancer biomarkers, particularly in liver cancer. His development of multi-biomarker panels for cancer detection is a key step forward in precision medicine, which promises to enhance personalized treatment strategies for cancer patients. The clinical applications of his research in immuno-oncology also offer promise in the future of cancer care.

📚 Academic Citations

Dr. Kim’s research has earned recognition in the scientific community, with several published papers and citations highlighting his contributions to mass spectrometry and cancer biomarker research. His work on aberrant glycoproteins in colorectal cancer and hepatocellular carcinoma has been instrumental in advancing the understanding of cancer biomarkers, leading to increased citations in the fields of oncology and analytical chemistry.

🛠️ Technical Skills

Dr. Kim possesses a wide range of technical skills, particularly in the area of mass spectrometry. He is an expert in developing and applying various mass spectrometry techniques such as multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), and high-resolution mass spectrometry using MALDI MS and FT-ICR. Additionally, he has extensive experience in protein quantification through immunoprecipitation and targeted mass spectrometry, particularly for low-abundance proteins. His technical expertise extends to the development of methods for high-throughput peptide and glycopeptide analysis.

👨‍🏫 Teaching Experience

Throughout his career, Dr. Kim has been actively involved in mentoring and educating the next generation of scientists. While pursuing his graduate studies, he worked as a research assistant and fellow, helping to guide students in laboratory techniques and research methodologies. His role as a leader in the Bio R&D Center at CellKey also involves sharing his expertise with younger researchers and fostering a collaborative environment for innovation in cancer diagnostics.

🌱 Legacy and Future Contributions

Looking to the future, Dr. Kim’s work promises to leave a lasting legacy in the fields of mass spectrometry and cancer diagnostics. His continued efforts to refine diagnostic biomarkers and improve detection methods are expected to contribute significantly to the fields of personalized medicine and immuno-oncology. As he expands his research into new areas, his contributions will likely inspire new diagnostic tools and clinical applications, shaping the future of cancer research and treatment.

🔮 Future Goals

Dr. Kim’s future goals include the further development of advanced diagnostics for early cancer detection and the continuous improvement of biomarker panels. With the evolving field of immuno-oncology, he plans to work on improving companion diagnostics, focusing on the use of mass spectrometry to assess tumor microenvironments and treatment responses. His dedication to advancing the science of cancer biomarkers positions him at the forefront of precision medicine, with the potential to greatly impact clinical practices.

📖Notable Publications

LC-MS/MS-Based Site-Specific N-Glycosylation Analysis of VEGFR-IgG Fusion Protein for Sialylation Assessment Across IEF Fractions
  • Authors: Kim, K. H., Ji, E. S., Lee, J. Y., Song, J. H., & Ahn, Y. H.
    Journal: Molecules
    Year: 2024
Measuring fucosylated alpha‐fetoprotein in hepatocellular carcinoma: A comparison of μTAS and parallel reaction monitoring
  • Authors: Kim, K. H., Lee, S. Y., Baek, J. H., Lee, S. Y., Kim, J. Y., & Yoo, J. S.
    Journal: PROTEOMICS–Clinical Applications
    Year: 2021
Absolute Quantification of N-Glycosylation of Alpha-Fetoprotein Using Parallel Reaction Monitoring with Stable Isotope-Labeled N-Glycopeptide as an Internal Standard
  • Authors: Kim, K. H., Lee, S. Y., Kim, D. G., Lee, S. Y., Kim, J. Y., & Yoo, J. S.
    Journal: Analytical Chemistry
    Year: 2020
BMDMSNP: A comprehensive ESI-MS/MS spectral library of natural compounds
  • Authors: Lee, S., Hwang, S., Seo, M., Shin, K. B., Kim, K. H., Park, G. W., & No, K. T.
    Journal: Phytochemistry
    Year: 2020
Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma
  • Authors: Kim, K. H., Kim, J. Y., & Yoo, J. S.
    Journal: Expert Review of Proteomics
    Year: 2019
Parallel reaction monitoring with multiplex immunoprecipitation of N-glycoproteins in human serum for detection of hepatocellular carcinoma
  • Authors: Kim, K. H., Park, G. W., Jeong, J. E., Ji, E. S., An, H. J., Kim, J. Y., & Yoo, J. S.
    Journal: Analytical and Bioanalytical Chemistry
    Year: 2019

Sicong Ma | Theoretical and Computational Chemistry | Best Researcher Award

Assoc. Prof. Dr. Sicong Ma | Theoretical and Computational Chemistry | Best Researcher Award

Shanghai Institute of Organic Chemistry, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Sicong Ma, born in March 1992, began his academic journey with a strong foundation in applied chemistry at the China University of Petroleum (Beijing), where he completed his Bachelor of Science in 2013. He continued at the same institution for a Master's degree in Chemistry, working under the guidance of Professor Zhen Zhao until 2016. His academic path led him to Fudan University, where he earned his Ph.D. in Physical Chemistry in 2019 under Professor Zhi-Pan Liu. Here, he developed his expertise in theoretical and computational chemistry, laying the groundwork for his future contributions to catalysis and machine learning.

🏢 Professional Endeavors

After completing his Ph.D., He joined Fudan University as a postdoctoral researcher, continuing his work with Professor Zhi-Pan Liu until 2021. In August 2021, he joined the Shanghai Institute of Organic Chemistry as an Assistant Researcher. Recently promoted to Associate Professor, He has led several projects funded by prestigious institutions, including the National Natural Science Excellent Youth Fund, Shanghai Municipal Science and Technology Commission, and the China Postdoctoral Fund.

🔍 Contributions and Research Focus

His research interests span a unique blend of machine learning and catalysis. His expertise extends across both homogeneous and heterogeneous catalysis, with a particular focus on: Machine Learning and Heterogeneous Catalysis: He has conducted research on syngas-to-olefins conversions on OX-ZEO catalysts, propane hydrogenation, and similar transformations, Machine Learning and Homogeneous Catalysis: His work includes studies on the carbonylation of olefins and the development of a metal-phosphine ligand catalyst database, Zeolite Chemistry: He is also active in studying the mechanisms of zeolite formation and their applications in catalysis, contributing significantly to zeolite-related database construction.

📈 Impact and Influence

He has made substantial contributions to the field, publishing more than 20 papers in renowned journals such as Nature Catalysis, Nature Communications, and ACS Catalysis. Notably, he has served as first or corresponding author on 15 of these publications, solidifying his role as a leader in his field. His work has garnered attention and citations, reflecting his influence within theoretical and computational chemistry.

📚 Academic Achievements and Honors

Recognized for his academic excellence, He has received numerous awards and honors. He was honored with the Excellent Doctoral Dissertation Award from Fudan University in 2019, recognized as an Academic Star of Fudan University the same year, and awarded a Shanghai Super Postdoctoral Fellowship. Recently, he was inducted as a member of the Youth Innovation Promotion Association by the Chinese Academy of Sciences in 2023.

🛠️ Technical Skills

His technical expertise includes advanced machine learning algorithms for catalysis, computational modeling in chemistry, and extensive knowledge of catalysis mechanisms in both homogeneous and heterogeneous systems. His computational skills and programming knowledge enable him to create and manage large databases, crucial for his projects on zeolite and catalyst-related data.

📖 Teaching and Mentoring Experience

While focused primarily on research, He has also contributed to the academic community by mentoring postdocs and junior researchers in his lab. His guidance fosters a collaborative environment, ensuring that emerging researchers develop the skills necessary to advance in computational chemistry and catalysis.

🌐 Legacy and Future Contributions

His ongoing work promises to deepen the integration of machine learning in catalysis, with potential implications for sustainable energy solutions and efficient industrial chemical processes. As a young innovator and leader in his field, he is set to make lasting contributions, furthering both academic knowledge and practical applications in computational chemistry.

📖Notable Publications

 

Sajad Ahmad | Inorganic Chemistry | Best Researcher Award

Mr. Sajad Ahmad | Inorganic Chemistry | Best Researcher Award

National Institute of Technology, Srinagar, India

Profile👨‍🎓

📘 Early Academic Pursuits

Sajad Ahmad completed his foundational education through the Jammu and Kashmir Board of School Education, achieving a strong academic standing from high school to intermediate level. Progressing to higher education, he earned a Bachelor of Science in 2016 and a Master’s in Inorganic Chemistry in 2019 from the University of Kashmir, where he maintained first-division scores.

🧑‍🔬 Professional Endeavors

He holds a Junior Research Fellowship, awarded by the University Grants Commission in New Delhi, starting in September 2022. This fellowship has facilitated his research in material science, specifically in environmental remediation and antibacterial applications using carbon-based and chitosan-modified materials.

🔬 Contributions and Research Focus

Her research centers around environmental remediation, photocatalysis, and antibacterial activities. His studies include advanced materials such as oxygen-doped porous carbon adsorbents, chitosan-modified ferrite, and graphitized 3D carbon. His notable publications address topics like the remediation of hexavalent chromium, fenitrothion pesticide, and heavy metal ions in aquatic environments. Currently, he has both published and communicated several high-impact research articles, demonstrating his commitment to solving pressing environmental issues through innovative materials science.

🌍 Impact and Influence

By publishing in high-impact journals such as International Journal of Biological Macromolecules and Inorganic Chemistry Communications, He has contributed significant insights into sustainable environmental practices. His work is particularly influential in the fields of inorganic and environmental chemistry, providing practical and effective solutions for pollution control.

🛠️ Technical Skills

His technical expertise includes synthesis and characterization of adsorbent and photocatalytic materials, environmental chemistry techniques, and antimicrobial assays. His research demands a comprehensive understanding of material properties, adsorption mechanisms, and photocatalytic efficiency, which he effectively applies to his work.

🧑‍🏫 Teaching Experience

While His resume does not explicitly mention teaching experience, his active research collaborations suggest skills in mentorship and knowledge transfer, particularly in guiding others through complex experimental processes and results analysis.

🌟 Legacy and Future Contributions

He is poised to make a significant impact in sustainable materials science, aiming to develop more advanced and eco-friendly materials for pollution control. His commitment to innovation and publication in impactful journals lays the foundation for a future marked by meaningful contributions to environmental remediation and applied chemistry.

Notable Publications📖

 

Martín Fernández Baldo | Bioanalítica | Best Researcher Award

Dr. Martín Fernández Baldo | Bioanalítica | Best Researcher Award 

Universidad Nacional de San Luis, Argentina

👨‍🎓 Profile

🎓 Early Academic Pursuits

He pursued a solid academic journey, beginning with his primary education at Justo José de Urquiza in Maipú, Mendoza, where he graduated in December 1989. He later attended Liceo Militar General Espejo for his secondary education, graduating as a Bachiller and Subteniente de Reserva del Arma de Infantería in December 1994.

🏛 Higher Education

Fernández Baldo pursued his Bachelor's degree in Biochemistry from the Universidad Nacional de San Luis, completing his studies in 2007. He later obtained his Doctorate in Biochemistry, with his thesis titled "Control Biológico en Postcosecha: Desarrollo de Metodologías para la Detección y Cuantificación de Mohos Fitopatógenos y Micotoxinas". His thesis work was guided by Dr. María Isabel Sanz Ferramola (Director) and Dr. Germán Messina (Co-Director).

💼 Professional Endeavors

Currently, Martín Fernández Baldo is based in San Luis, Argentina, where he works at the Universidad Nacional de San Luis. He holds positions in both the Facultad de Química, Bioquímica y Farmacia in the Department of Chemistry and the Department of Bioquímica y Ciencias Biológicas. He is associated with CONICET and works in the Instituto de Química de San Luis (INQUISAL), contributing to the Laboratorio de Bioanalítica.

🔬 Contributions and Research Focus

Fernández Baldo's research is centered around bioanalytical chemistry and nanotechnology. He has expertise in synthesizing nanomaterials using both chemical and biological methods (such as microorganisms like fungi and bacteria). His work includes the use of these nanomaterials in biosensors with electrochemical detection or laser-induced fluorescence (LIF) for the determination of various biochemical, environmental, and agro-food analytes.

In recent years, his research has expanded to focus on the early diagnosis of epithelial cancers (breast, colorectal, lung, prostate) through the determination of specific tumor markers. He is also dedicated to the diagnosis of infectious diseases like parasitic, viral, and fungal infections.

🌍 Impact and Influence

Fernández Baldo's work in the field of bioanalytical chemistry and nanotechnology is making significant strides in improving diagnostic tools for both cancer and infectious diseases. His interdisciplinary approach, combining nanotechnology with bioanalytical methods, has had a notable impact on public health diagnostics, especially in low-resource settings where early and accurate detection is critical.

🛠️ Technical Skills

His technical expertise spans a variety of advanced techniques, including: Nanomaterial synthesis (chemical and biological methods). Characterization of nanomaterials using: UV-vis, XRD, XRF, FTIR, DLS, SEM, EDS, TEM. Biosensor development for: Electrochemical detection, Laser-induced fluorescence (LIF) detection.

🏅 Teaching Experience

Throughout his career, Martín Fernández Baldo has also been involved in teaching and mentorship. He contributes to postgraduate courses, such as the course on "Instrumental Analysis Methods: Biological Applications", offered by the Universidad Nacional de Cuyo. His participation in academia extends to supervising students and guiding research projects in the fields of analytical chemistry and bioanalysis.

📚 Legacy and Future Contributions

Looking forward, Martín Fernández Baldo aims to further his research in bioanalytical chemistry and nanotechnology, specifically focusing on the early diagnosis of cancers and infectious diseases. His goal is to develop more efficient, cost-effective diagnostic tools that can be applied globally. His work will likely continue to influence the fields of public health, analytical chemistry, and nanotechnology, contributing to the betterment of global diagnostic practices.

📖  Notable Publications

Copper nanoparticles as a potential emerging pollutant: Divergent effects in the agriculture, risk-benefit balance and integrated strategies for its use

Authors: Tortella, G., Rubilar, O., Fincheira, P., Fernandez-Baldo, M., Seabra, A.B.
Journal: Emerging Contaminants
Year: 2024

Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems

Authors: Fernández-Triana, I., Rubilar, O., Parada, J., Seabra, A.B., Tortella, G.R.
Journal: Science of the Total Environment
Year: 2024

Electrochemical microfluidic immunosensor with graphene-decorated gold nanoporous for T-2 mycotoxin detection

Authors: Fernandez Solis, L.N., Silva Junior, G.J., Bertotti, M., Fernández-Baldo, M.A., Regiart, M.
Journal: Talanta
Year: 2024

Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health

Authors: Gomez, G.E., Hamer, M., Regiart, M.D., Soler Illia, G.J.A.A., Fernández-Baldo, M.A.
Journal: Antibiotics
Year: 2024

Use of Mechanochemical Methodology to Explore the Formation of a New Crystalline Phase in the Curcumin-Quercetin System

Authors: D'Vries, R.F., Pastrana-Dávila, A., Pantoja, K.D., Gomez, G.E., Fernández-Baldo, M.A.
Journal: ChemistrySelect
Year: 2024

Five years of advances in electrochemical analysis of protein biomarkers in lung cancer: a systematic review

Authors: Regiart, M., Fernández-Baldo, M.A., Navarrete, B.A., Valero, T., Ortega, F.G.
Journal: Frontiers in Chemistry
Year: 2024

Origami Paper-Based Electrochemical Immunosensor with Carbon Nanohorns-Decorated Nanoporous Gold for Zearalenone Detection

Authors: Laza, A., Pereira, S.V., Messina, G.A., Regiart, M.D., Bertolino, F.A.
Journal: Chemosensors
Year: 2024