Nuchnapa Tangboriboon | Materials Chemistry | Best Researcher Award -1921

Assoc. Prof. Dr. Nuchnapa Tangboriboon | Materials Chemistry | Best Researcher Award

Kasetsart University, Thailand

👨‍🎓Profiles

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Nuchnapa Tangboriboon, currently a distinguished faculty member at Kasetsart University, Thailand, has dedicated her academic journey to advancing material sciences, particularly focusing on inorganic, ceramic, and bio-nanomaterials. From her formative years as a researcher to her current role, Dr. Tangboriboon has consistently shown a passion for integrating natural and synthetic materials for industrial and biomedical applications. Her foundational studies laid the groundwork for her contributions to sustainable materials science and engineering.

🏢 Professional Endeavors

Dr. Tangboriboon serves as the head of the Applications of Inorganic, Ceramic, and Natural Bio-Nanomaterials Research Unit at Kasetsart University. Under her supervision, the research unit operates at the intersection of traditional material processing and innovative nanotechnology. The lab has developed expertise in ceramic, glass, and gypsum processing for advanced applications and building construction, alongside pioneering research in bio-nanomaterials and their applications in healthcare and industrial sectors.

🔬 Contributions and Research Focus

Dr. Tangboriboon’s research contributions have significantly advanced the understanding and application of bio-nanomaterials for industrial and medical applications. Her lab specializes in:

  • The development of bio-nanomaterials for innovative medical solutions.
  • 3D printing, sol-gel, and slip casting techniques for ceramics and glasses.
  • Designing and producing synthetic and natural rubber films for medical products, including gloves, patches, and tissue-engineering materials using gypsum and ceramic hand molds.
  • Crafting bio-composite materials and eco-friendly bio-catalysts aimed at promoting alternative and sustainable energy solutions.

🌍 Impact and Influence

Dr. Tangboriboon’s work holds considerable influence in both academic and industrial spheres, bridging the gap between fundamental research and real-world applications. Her advancements in natural rubber latex applications and bio-composites have been instrumental in Thailand’s growing emphasis on sustainable material production, healthcare innovations, and green technology.

📚 Academic Citations and Recognition

With numerous publications in peer-reviewed journals, Dr. Tangboriboon’s research has garnered significant academic recognition, contributing to her standing as a respected expert in her field. Her work is frequently cited by researchers focusing on bio-nanomaterials, ceramic sciences, and green energy technologies, affirming her contributions to cutting-edge scientific development.

🛠️ Technical Skills

Dr. Tangboriboon has mastered a variety of advanced material processing techniques, including:

  • 3D printing of ceramics and glasses.
  • Sol-gel synthesis and slip casting methods.
  • Fabrication of rubber-based biomedical devices.
  • Bio-catalyst development for renewable energy applications.

Her proficiency extends to interdisciplinary fields combining materials science, biomedical engineering, and sustainable technology.

👩‍🏫 Teaching Experience

In addition to her research, Dr. Tangboriboon is an enthusiastic educator. At Kasetsart University, she mentors undergraduate and graduate students, fostering a learning environment that emphasizes research-based education. She has supervised numerous thesis projects and research initiatives, equipping students with practical skills in ceramic processing, bio-nanomaterial fabrication, and medical device prototyping.

🌱 Legacy and Future Contributions

Dr. Tangboriboon envisions a future where bio-based materials and nanotechnology will play pivotal roles in addressing global challenges such as environmental sustainability and public health. Her ongoing commitment to green resources and alternative energies ensures that her lab will continue to contribute impactful solutions to both academia and industry. She is dedicated to nurturing the next generation of researchers while pushing the boundaries of material science innovation.

📖Notable Publications

Multifunctional role of calcium chloride in improving the chemical, mechanical, and physical properties of natural and synthetic rubber latex for gloves and transdermal patch films
Authors: P. Kantasa, A. Obormkul, N. Tangboriboon
Journal: Industrial Crops and Products
Year: 2025

Bio composite of porous hydroxyapatite and collagen extracted from eggshell membrane and Oreochromis niloticus fish skin for bone tissue applications
Authors: N. Ingwattanapok, Y. Sakunrak, N. Tangboriboon
Journal: Journal of Applied Polymer Science
Year: 2023

Enhancement of water and salt penetration resistance into mortar cement composited with vulcanized natural rubber compound
Authors: I. Jitkarune, P. Manantapong, N. Tangboriboon
Journal: Journal of Applied Polymer Science
Year: 2023

Conductive and self-cleaning composite membranes from corn husk nanofiber embedded with inorganic fillers (TiO2, CaO, and eggshell) by sol-gel and casting processes for smart membrane applications
Authors: S. Posri, N. Tangboriboon
Journal: Reviews on Advanced Materials Science
Year: 2023

Modified thermal- and sound-absorption properties of plaster sandwich panels with natural rubber-latex compounds for building construction
Authors: S. Pianklang, S. Muntongkaw, N. Tangboriboon
Journal: Journal of Applied Polymer Science
Year: 2022

Effects of physical and chemical properties of ceramic hand moulds on natural rubber latex glove film formation
Authors: N. Tangboriboon, S. Changkhamchom, A. Sirivat
Journal: International Journal of Materials and Product Technology
Year: 2022

 

Aurica Farcas | Polymer Chemistry | Best Researcher Award

Ms. Aurica Farcas | Polymer Chemistry | Best Researcher Award

Institute of Macromolecular Chemistry Petru Poni, Romania

👨‍🎓Profiles

🏛️ Early Academic Pursuits

Aurica Farcas embarked on her academic journey with a strong foundation in polymer chemistry. Her pursuit of excellence led to a Ph.D. in Polymer Chemistry in 1998, completed with honors at the prestigious "Petru Poni" Institute of Macromolecular Chemistry (ICMPP), Iasi, Romania. This early phase of her career laid the groundwork for her expertise in organic and polymer chemistry, supramolecular chemistry, and molecular recognition.

👩‍🔬 Professional Endeavors

Dr. Farcas has dedicated her career to advancing polymer and organic chemistry, focusing on innovative research that bridges fundamental science and industrial applications. As a researcher at ICMPP, she has played a pivotal role in the development of novel organic materials, specializing in encapsulated π-conjugated monomers, oligomers, and polymers. Her work also extends to surface characterization, electrochemistry, and the study of organic semiconductors' optical, electrical, and doping properties.

🧪 Contributions and Research Focus

Her research is centered on the control and tailoring of intermolecular interactions in organic semiconductor materials, particularly through molecular encapsulation. These advancements hold promise for the next generation of electronic materials, opening doors to new applications in optoelectronics, flexible electronics, and molecular recognition-based technologies.

Dr. Farcas has contributed significantly to:
✅ The synthesis and characterization of novel organic and polymeric materials.
✅ Development of supramolecular assemblies for enhanced electronic properties.
✅ Exploration of encapsulation techniques to improve material stability and efficiency.

🌍 Impact and Influence

With a research career spanning over two decades, Dr. Farcas has secured more than 40 national and international research grants, a testament to her scientific impact and leadership. Her work has led to 21 laboratory technologies, including three industrial applications, demonstrating her commitment to translating fundamental research into real-world solutions.

Her research findings have shaped contemporary understanding of organic semiconductor materials, influencing advancements in organic electronics and molecular recognition systems.

📖 Academic Contributions and Citations

Dr. Farcas has an extensive publication record, showcasing her dedication to disseminating scientific knowledge. Her academic contributions include:
📚 2 authored books & 6 book chapters
📝 80+ papers published in ISI-indexed journals
📄 40+ articles in non-ISI journals
🎤 21 invited lectures at national and international scientific conferences

Her impact in the scientific community is further reflected in her Web of Science ResearcherID: C-2512-2011.

🛠️ Technical Skills

Dr. Farcas possesses expertise in various cutting-edge techniques and methodologies, including:
🔬 Polymer synthesis and characterization techniques.
⚛️ Supramolecular chemistry and molecular encapsulation.
📊 Surface characterization and electrochemical analysis.
💡 Optical and electronic property evaluation of organic semiconductors.

These technical proficiencies have been instrumental in developing new organic materials with tailored properties for advanced applications.

🎓 Teaching and Mentorship

Beyond research, Dr. Farcas has been actively involved in mentoring young scientists and researchers, guiding them through complex chemical and materials science concepts. Her contributions to education and knowledge transfer have played a crucial role in shaping the next generation of researchers in polymer and organic chemistry.

🔮 Legacy and Future Contributions

As a seasoned researcher, Dr. Farcas continues to push the boundaries of material science. Her future contributions are expected to:
✨ Drive innovations in organic electronic materials.
✨ Expand the practical applications of molecular encapsulation techniques.
✨ Contribute to the development of more sustainable and efficient polymer-based technologies.

📖Notable Publications

  • A thiophene-based bisazomethine and its inclusion complex with permethylated β-cyclodextrin: Exploring structural characteristics and computational chemistry models

    • Authors: A.M. Resmerita, Ana Maria; C. Cojocaru, Corneliu; M.D. Dǎmǎceanu, Mariana Dana; A.E. El Haitami, Alae E.; A. Farcaş, Aurica
    • Journal: Dyes and Pigments
    • Year: 2025
  • Aromatic Co-Polyazomethine Polyrotaxane with Enhanced Solubility Applied as a Hole Carrier in a p-n Heterojunction Diode

    • Authors: C. Ursu, Cristian; A.M. Resmerita, Ana Maria; R.I. Tigoianu, Radu Ionut; A. Farcaş, Aurica
    • Journal: ACS Applied Polymer Materials
    • Year: 2024
  • Composite materials based on slide-ring polyrotaxane structures for optoelectronics

    • Authors: A.M. Resmerita, Ana Maria; M. Asandulesa, Mihai; A. Farcaş, Aurica
    • Journal: Journal of Polymer Science
    • Year: 2024
  • Thermal Transitions and Structural Characteristics of Poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) Polypseudorotaxane and Polyrotaxane Thin Films

    • Authors: B. Hajduk, Barbara; P. Jarka, Pawel; H. Bednarski, H.; P. Kumari, Pallavi; A. Farcaş, Aurica
    • Journal: Materials
    • Year: 2024
  • Synthesis, Properties and Adsorption Kinetic Study of New Cross-Linked Composite Materials Based on Polyethylene Glycol Polyrotaxane and Polyisoprene/Semi-Rotaxane

    • Authors: A.M. Resmerita, Ana Maria; A. Bargan, Alexandra; C. Cojocaru, Corneliu; A. Farcaş, Aurica
    • Journal: Materials
    • Year: 2023
  • Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air–Water Interface

    • Authors: A.E. El Haitami, Alae E.; A.M. Resmerita, Ana Maria; E.L. Ursu, Elena Laura; S. Cantin, Sophie; A. Farcaş, Aurica
    • Journal: Materials
    • Year: 2023
  • The straightforward approach of tuning the photoluminescence and electrical properties of encapsulated PEDOT end-capped by pyrene

    • Authors: A. Farcaş, Aurica; M. Damoc, Madalin; M. Asandulesa, Mihai; R.I. Tigoianu, Radu Ionut; E.L. Ursu, Elena Laura
    • Journal: Journal of Molecular Liquids
    • Year: 2023