Bassam Najri | Analytical Chemistry | Best Researcher Award

Mr. Bassam Najri | Analytical Chemistry | Best Researcher Award

Eskisehir Osmangazi University, Turkey

Profiles

Early Academic Pursuits

Bassam A. Najri began his academic journey with exceptional distinction, completing both his Bachelor’s and Master’s degrees in Chemistry with top honors. Demonstrating a strong aptitude for analytical and organic chemistry from the outset, he consistently ranked among the top of his class. His early academic interests were rooted in the exploration of structure–activity relationships and the synthesis of biologically active compounds, which naturally progressed into his current doctoral work in Organic Chemistry at Eskisehir Osmangazi University. This strong foundation set the stage for his interdisciplinary approach to chemical research.

Professional Endeavors

As a PhD candidate, Mr. Najri has cultivated a diverse research portfolio spanning organic synthesis, nanomaterials, electrocatalysis, and medicinal chemistry. His work is driven by the synthesis and characterization of functional materials with applications in clean energy and biomedicine. He has actively participated in five major research projects, leading investigations into novel catalysts for hydrogen production and drug development frameworks. His expertise is supported by hands-on proficiency in high-performance analytical techniques including HPLC, UV-Vis spectroscopy, IR spectroscopy, electrochemical impedance spectroscopy, and various in silico computational platforms for drug modeling.

Contributions and Research Focus

Najri’s contributions are marked by innovation at the interface of chemistry and engineering. He has co-developed benzofuran derivatives and metal-organic frameworks with promising catalytic and therapeutic applications. His research approach blends experimental design with computational analysis, yielding high-impact results in hydrogen evolution reactions, drug–target interactions, and electrochemical sensor development. His goal is to engineer materials that offer real-world solutions to energy storage challenges and emerging health issues. This multifaceted focus enables him to remain at the forefront of applied organic chemistry and nanotechnology.

Impact and Influence

Mr. Najri has co-authored over 14 publications in prestigious, peer-reviewed, indexed journals including ACS Omega, Fuel, Renewable Energy, Ionics, and Process Safety and Environmental Protection. His citation record reflects a growing academic impact, with over 100 citations, an h-index of 4, and an i10-index of 3. His interdisciplinary work has attracted attention from collaborators across Turkey, Palestine, Algeria, and Tunisia, where he contributes to international teams tackling problems in clean energy, cancer therapy, and environmental sustainability.

Academic Citations and Recognition

His academic footprint continues to expand through consistent scholarly publishing and conference participation. Despite not holding editorial or consultancy roles, his involvement in multi-country research collaborations and conference forums underlines his academic credibility and growing recognition within the scientific community. He remains actively involved with the NanotechSEM research team and participates in national chemistry and microscopy congresses in Turkey.

Technical Skills

Najri possesses a wide array of technical competencies central to modern chemical research. He is proficient in instrumental analysis techniques including HPLC, UV-Vis, FT-IR, and electrochemical techniques such as cyclic voltammetry and impedance spectroscopy. On the computational side, he has applied molecular docking, DFT calculations, and QSAR modeling tools for drug design and catalyst optimization. These combined skills empower him to bridge experimental and theoretical chemistry efficiently.

Teaching and Mentorship Experience

While formal teaching positions are not listed, Najri’s active involvement in academic research projects suggests strong collaborative and mentorship capabilities. His ability to integrate complex methods and explain cross-disciplinary phenomena indicates a readiness to mentor junior researchers and contribute to academic training programs, particularly in laboratory environments and applied research teams.

Legacy and Future Contributions

Bassam A. Najri is building a research legacy focused on sustainability, clean energy, and precision medicine. His commitment to developing high-performance electrocatalysts and therapeutic agents aligns with global efforts to transition toward environmentally friendly technologies. Moving forward, he aims to expand his collaborations and lead cutting-edge research in hydrogen energy systems and nanomedicine. With his solid scientific foundation and collaborative spirit, he is well-positioned to become a transformative figure in the chemical sciences.

Notable Publications

Modified carbon paste electrode for potentiometric determination of silver (I) ions in burning cream and radiological films
Authors: H.M. Abu-Shawish, S.M. Saadeh, H.M. Dalloul, B.A. Najri, H. Al Athamna
Journal: Sensors and Actuators B: Chemical, 182, 374–381
Year: 2013

Utilization of surface plasmon resonance band of silver nanoparticles for determination of critical micelle concentration of cationic surfactants
Authors: J.K. Salem, I.M. El-Nahhal, B.A. Najri, T.M. Hammad
Journal: Chemical Physics Letters, 664, 154–158
Year: 2016

Effect of anionic surfactants on the surface plasmon resonance band of silver nanoparticles: Determination of critical micelle concentration
Authors: J.K. Salem, I.M. El-Nahhal, B.A. Najri, T.M. Hammad, F. Kodeh
Journal: Journal of Molecular Liquids, 223, 771–774
Year: 2016

Design of highly effective organic catalyst for hydrazine electrooxidation: Iodobenzo[b]furan derivatives
Authors: B.A. Najri, S. Kaya, E. Kavak, A. Kivrak, H. Kivrak
Journal: Process Safety and Environmental Protection, 187, 792–798
Year: 2024

Ashok Kumar SK | Chemical Sensors | Analytical Chemistry Award

Dr. Ashok Kumar SK | Chemical Sensors | Analytical Chemistry Award

Vellore Institute of Technology, India

👨‍🎓Profiles

🏫 Early Academic Pursuits

He began his academic journey with a Master of Science (M.Sc.) in Industrial Chemistry from Kuvempu University in 1994. His thirst for knowledge and dedication to chemistry led him to pursue a Ph.D. at Thapar University, which he successfully completed in 2006. These foundational years laid the groundwork for his illustrious career in research and academia.

💼 Professional Endeavors

He currently serves as a Professor in the Department of Chemistry, School of Advanced Sciences, at the Vellore Institute of Technology (VIT), Tamil Nadu. Over the years, he has established himself as a prominent figure in the field of supramolecular chemistry, coordination and organometallic chemistry, materials chemistry, and analytical chemistry. His office at VIT stands as a hub for innovation and guidance for aspiring chemists.

🔬 Contributions and Research Focus

His research spans a broad spectrum of chemistry: Chemical Sensors: His work on chromogenic, fluorogenic, potentiometric, and voltammetric sensors has advanced analytical techniques. Chemotherapy Agents: Development of agents aimed at enhancing cancer treatment methodologies. Inorganic Ion-Exchange Materials: Applications in separation science, ion sensing, and catalysis. Nanocomposites & Porous Carbon Materials: Pioneering their use for water purification and environmental applications. Sustainable Chemistry: Focused on solvent extraction, membrane separation, and biofuel production from biomass. These endeavors highlight his commitment to addressing real-world problems through chemical innovation.

🌟 Impact and Influence

His work has significantly impacted the fields of materials and analytical chemistry. He has cultivated groundbreaking methods for sensing ions, enhancing water purification, and contributing to sustainable fuel technologies. His membership in professional societies such as the Chemical Research Society of India and the Indian Science Congress underscores his influence and active involvement in the scientific community.

📖 Academic Citations and Recognition

With an ORCID ID of 0000-0002-1723-3447 and Researcher ID E-7817-2011, His contributions are well-documented in prestigious journals. His Google Scholar profile (N9mJuGQAAAAJ) lists numerous citations, reflecting the global acknowledgment of his research.

🛠️ Technical Skills

He is adept at various analytical and experimental techniques: Development and application of chemical sensors. Synthesizing nanocomposites and exploring their properties. Designing ion-exchange materials for separation and catalysis. His technical expertise ensures precision and innovation in his research projects.

🧑‍🏫 Teaching Experience and Mentorship

As a professor, He has not only conducted groundbreaking research but has also inspired the next generation of scientists. His lectures and guidance at VIT have equipped students with the knowledge and skills needed to excel in chemical research.

🏆 Legacy and Future Contributions

His legacy is defined by his multifaceted contributions to chemistry and his ability to translate complex research into practical applications. Moving forward, he aims to: Further explore sustainable chemistry solutions. Enhance chemotherapy agents for better efficacy. Develop advanced sensors for environmental and biomedical applications. His unwavering commitment to science ensures his continued relevance and impact on the global stage.

🌍 A Vision for the Future

His journey reflects a blend of academic rigor, innovative research, and impactful teaching. His focus on sustainability and healthcare resonates with contemporary global challenges, positioning him as a leader in chemistry with a lasting legacy.

📖Notable Publications

  1. Systematic Computational Approaches on Biosorption of Fluoride on Chitin: Crossover from Conventional to Short and Strong Hydrogen Bonds
    • Authors: Malhan, A.H., Job, N., Francis, A.M., Ashok Kumar, S.K., Thirumoorthy, K.
    • Journal: ACS ES&T Water
    • Year: 2024
  2. Trace level detection of putrescine and cadaverine in food samples using a novel rhodanine-imidazole dyad and evaluation of its biological properties
    • Authors: Joseph, S., Ashok Kumar, S.K.
    • Journal: Journal of Hazardous Materials
    • Year: 2024
  3. A highly lipophilic terpyridine ligand as an efficient fluorescent probe for the selective detection of zinc(ii) ions under biological conditions
    • Authors: Panicker, R.R., Joseph, S., Dharani, S., Ashok Kumar, S.K., Sivaramakrishna, A.
    • Journal: Analytical Methods
    • Year: 2024
  4. Methods special issue: Recent advancement on fluorescent chemosensing and bioimaging
    • Authors: Sahoo, S.K., Ashok Kumar, S.K.
    • Journal: Methods
    • Year: 2024
  5. Chromene-chromene Schiff base as a fluorescent chemosensor for Th4+ and its application in bioimaging of Caenorhabditis elegans
    • Authors: Dua, A., Saini, P., Goyal, S., Sharma, H.K., Kumar Ramasamy, S.
    • Journal: Methods
    • Year: 2024