Yong Jyun Wang | Materials Chemistry | Best Researcher Award

Mr. Yong Jyun Wang | Materials Chemistry | Best Researcher Award

National Tsing Hua University, Taiwan

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mr. Yong Jyun Wang embarked on his academic journey in the field of Materials Science, and he is currently a Ph.D. candidate at the Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, expecting to graduate in 2025. His early academic foundation laid the groundwork for his deep engagement in the synthesis and property analysis of advanced functional materials, particularly focusing on oxide thin films.

💼 Professional Endeavors

Throughout his doctoral studies, Mr. Wang has actively participated in significant national research projects, including the MOST-113-2639-M-007-001–ASP, which centers on the development and future application of high-entropy epitaxial films. He has gained valuable experience in cutting-edge material fabrication techniques, with an emphasis on physical vapor deposition (PVD). His professional training is complemented by collaborative efforts within interdisciplinary research teams aiming to push the boundaries of electronic material design.

🔬 Contributions and Research Focus

Mr. Wang’s primary research has revolved around two-dimensional bismuth oxychalcogenides, particularly Bi₂O₂Se, targeting its integration into next-generation electronic and memory devices. Through compositional engineering and non-volatile modulation techniques, he has pioneered the development of p-type Bi₂O₂Se with high mobility, making it feasible for integration with its native n-type counterpart. This paves the way for complementary circuits, enhancing the material’s potential in versatile electronic systems. Furthermore, his innovative approach to non-volatile control enables memory functionalities, expanding the application horizon of Bi₂O₂Se in advanced backend electronics.

🌍 Impact and Influence

Despite being at an early stage in his career, Mr. Wang has already made notable contributions to the materials science community. His work has been featured in prestigious journals such as Nature Communications and Advanced Materials, indicating strong recognition from the academic community. His insights into high-mobility semiconducting materials have opened new research avenues for low-power electronics and neuromorphic computing.

🛠️ Technical Skills

Mr. Wang is proficient in advanced thin-film fabrication methods, especially physical vapor deposition, and skilled in material characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrical transport measurements. His technical versatility allows for comprehensive investigations into both structural and electronic properties of novel materials.

👨‍🏫 Teaching Experience

While pursuing his Ph.D., Mr. Wang has actively mentored undergraduate and junior graduate students, assisting them in lab training and project supervision. His role as a peer mentor has not only contributed to the academic growth of his colleagues but also strengthened his capabilities in scientific communication and leadership.

🌱 Legacy and Future Contributions

Mr. Wang’s work on Bi₂O₂Se has established a strong foundation for complementary logic and memory device platforms, essential for the advancement of low-dimensional nanoelectronics. Looking ahead, he aspires to continue his research into functional oxide materials, explore heterogeneous integration, and contribute to the development of energy-efficient and intelligent device systems. His vision includes bridging fundamental material science with practical applications in flexible electronics, smart sensors, and neuromorphic systems.

📖Notable Publications

ZrO₂-HfO₂ Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability
Authors: Y.K. Liang, W.L. Li, Y.J. Wang, L.C. Peng, C.C. Lu, H.Y. Huang, S.H. Yeong, …
Journal: IEEE Electron Device Letters
Year: 2022

Electric-field control of the nucleation and motion of isolated three-fold polar vertices
Authors: M. Li, T. Yang, P. Chen, Y. Wang, R. Zhu, X. Li, R. Shi, H.J. Liu, Y.L. Huang, …
Journal: Nature Communications
Year: 2022

High entropy nonlinear dielectrics with superior thermally stable performance
Authors: Y.J. Wang, H.C. Lai, Y.A. Chen, R. Huang, T. Hsin, H.J. Liu, R. Zhu, P. Gao, C. Li, …
Journal: Advanced Materials
Year: 2023

Flexible magnetoelectric complex oxide heterostructures on muscovite for proximity sensor
Authors: Y.J. Wang, J.W. Chen, Y.H. Lai, P.W. Shao, Y. Bitla, Y.C. Chen, Y.H. Chu
Journal: npj Flexible Electronics
Year: 2023

Quasi-static modulation of multiferroic properties in flexible magnetoelectric Cr₂O₃/muscovite heteroepitaxy
Authors: Y.H. Lai, P.W. Shao, C.Y. Kuo, C.E. Liu, Z. Hu, C. Luo, K. Chen, F. Radu, …
Journal: Acta Materialia
Year: 2023

Bindu Antil | Materials Chemistry | Best Researcher Award

Dr. Bindu Antil | Materials Chemistry | Best Researcher Award

Pennsylvania State University, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Bindu Antil began her academic journey at the University of Delhi, India, where she completed her Bachelor of Science (Hons.) in Chemistry in 2014. She further pursued a Master of Science in Chemistry in 2016, which strengthened her foundation in material science and nanotechnology. Her academic excellence led her to complete a Ph.D. in Chemistry (July 2022) under the supervision of Prof. Sasanka Deka, focusing on advanced nanomaterials for energy applications.

🏛️ Professional Endeavors

Dr. Antil is currently a Distinguished Postdoctoral Fellow at The Pennsylvania State University, USA, in the Department of Energy and Mineral Engineering. Working under Prof. Randy Lee Vander Wal, she is engaged in advanced research in energy materials, electrocatalysis, and hydrogen production. Previously, she participated in an internship under the DBT Star College Project (2012-2013) at the University of Delhi, where she explored carbon materials derived from renewable bio-precursors for Li-ion batteries and supercapacitors.

🔬 Research Focus and Contributions

Dr. Antil’s research revolves around multifunctional nanomaterials for energy storage and conversion. Some key areas of her work include:

Her expertise in colloidal and hydrothermal chemistry allows precise control over material properties, optimizing their efficiency for clean energy applications.

🌍 Impact and Influence

Dr. Antil’s work contributes to the advancement of renewable energy solutions. Her innovations in electrocatalysis and hydrogen generation have the potential to revolutionize energy storage and conversion technologies. Her research supports the global transition toward green energy, enhancing sustainability in battery technology, supercapacitors, and solar-driven hydrogen production.

📚 Teaching & Mentorship

Dr. Antil is actively involved in mentoring young researchers in energy storage, catalysis, and nanomaterials development. Her hands-on expertise with advanced analytical and fabrication techniques makes her a valuable mentor for students and researchers in the field.

🌟 Legacy and Future Contributions

Dr. Bindu Antil is shaping the future of renewable energy and nanomaterials research. With her expertise in hydrogen production, electrocatalysis, and advanced battery materials, she aims to drive breakthroughs in clean energy storage and conversion.

Her ongoing work as a Distinguished Postdoctoral Fellow at Penn State University will further enhance sustainable energy solutions, making her a key contributor to the global pursuit of green and efficient energy technologies.

📖Notable Publications

Development of graphitic and non-graphitic carbons using different grade biopitch sources
Authors: Bindu Antil, Yaseen Elkasabi, Gary D. Strahan, Randy L. Vander Wal
Journal: Carbon
Year: 2025

N-doped graphene modulated N-rich carbon nitride realizing a promising all-solid-state flexible supercapacitor
Author: Bindu Antil
Journal: Journal of Energy Storage
Year: 2022

A Superior and Stable Electrocatalytic Oxygen Evolution Reaction by One-Dimensional FeCoP Colloidal Nanostructures
Author: Bindu Antil
Journal: ACS Applied Materials & Interfaces
Year: 2022

One-Dimensional Multichannel g-C₃N₄.₇ Nanostructure Realizing an Efficient Photocatalytic Hydrogen Evolution Reaction and Its Theoretical Investigations
Author: Bindu Antil
Journal: ACS Applied Energy Materials
Year: 2021

Directed holey and ordered g-C₃N₄.₅ nanosheets by a hard template nanocasting approach for sustainable visible-light hydrogen evolution with prominent quantum efficiency
Author: Bindu Antil
Journal: Journal of Materials Chemistry A
Year: 2020

Direct Thermal Polymerization Approach to N-Rich Holey Carbon Nitride Nanosheets and Their Promising Photocatalytic H₂ Evolution and Charge-Storage Activities
Author: Bindu Antil
Journal: ACS Sustainable Chemistry & Engineering
Year: 2019