Yuhua Yang | Materials Chemistry | Best Researcher Award

Dr. Yuhua Yang | Materials Chemistry | Best Researcher Award

Jiangxi Science and Technology Normal University | China

Dr. Yuhua Yang is an accomplished materials scientist specializing in nanomaterials synthesis and advanced electrochemical energy-storage systems, with a strong focus on lithium-ion and lithium-sulfur battery technologies. He holds a bachelor’s degree from Nanchang University, a master’s degree from Beijing University of Posts and Telecommunications, and a Ph.D. from Hunan University. He has significant industrial and academic experience, having served in roles at Haier Group, China Netcom Corporation, and Yichun University before joining the School of Materials and Energy at Jiangxi Science and Technology Normal University. His research portfolio centers on bio-derived nanostructures and engineered electrode materials designed to overcome critical battery challenges, including volume expansion, low coulombic efficiency, and poor cycle stability. Representative studies include innovative Sn-based and Ni-based electrodes derived from bacterial carbon and natural biotemplates, such as Bacillus subtilis-based carbon @Sn anodes and yolk-shell Ni₃P-carbon@graphene frameworks, demonstrating enhanced electrochemical stability and durability. His recent publications also explore advanced core-shell architectures and flexible bacterial-carbon/graphene systems , reflecting his continuing drive toward high-capacity, stable, and flexible battery platforms. Notably, his contribution to bacteria-derived carbon materials for Li-S batteries published in Nano Letters  has been cited 110 times, underscoring international recognition of his work. Across 15 indexed publications, Dr. Yang has accumulated 515 citations from 487 documents and holds an h-index of 7 in Scopus, indicating strong and growing impact in the fields of materials chemistry and energy storage. His innovative approach of integrating biological templates with advanced nanostructuring strategies provides sustainable pathways for next-generation battery materials, positioning him as a rising leader in energy and nanomaterials research.

Profile : Scopus 

Featured Publications

Li, F., Han, P.-T., … Yang, Y.-H. (2025). The core-shell structure of bacteria-based C@Sn/Carbon nanotubes exhibits super-stable cycling performance for lithium-ion battery anodes. Journal of Power Sources, 645.

Li, F., Han, P.-T., … Yang, Y.-H. (2025). Flexible Co₃(PO₄)₂@ bacterial carbon/reduced graphene oxides for Li-ion batteries anode. Materials Letters, 389.

Zhang, Z.-W., Li, F., … Yang, Y.-H. (2024). Ultra-high first coulombic efficiency and stable cycle performance of bacterial-based C/Sn/SnS nanomaterial for lithium-ion battery anodes. Chemical Physics Letters, 840.

Yang, Y.-H., Xi, Z.-C., … Zhou, J. (2023). Gram-positive bacteria Bacillus subtilis-based carbon @ Sn anode for high-performance Li-ion batteries. Journal of Materials Science: Materials in Electronics, 34(8).

Yang, Y.-H., Zhang, Z.-W., … Zhou, J. (2022). The photoluminescence materials of green light Gd₂O₃:Eu and its influencing factors. Journal of the Physical Society of Japan, 91(11).

Myrtil Kahn | Coordination Chemistry | Best Researcher Award

Dr. Myrtil Kahn | Coordination Chemistry | Best Researcher Award

CNRS | France

Profiles

Scopus
Orcid

Early Academic Pursuits

Dr. Myrtil L. Kahn began her academic journey with a PhD in molecular compounds, under the supervision of a renowned expert in the field of coordination chemistry. Her doctoral work laid a strong foundation in molecular chemistry, which she later expanded into interdisciplinary domains. Her postdoctoral research included advanced work on ferrite nanoparticles and intermetallic particles, which positioned her at the intersection of nanoscience, materials chemistry, and applied physics.

Professional Endeavors

Following her postdoctoral experience, Dr. Kahn joined CNRS and quickly rose through the ranks to become a Senior Scientist and Research Director. She currently leads the “Nano-chemistry, Organization, and Sensors” team at the Laboratory of Coordination Chemistry (LCC) and also co-directs a multidisciplinary research initiative in collaboration with another leading national laboratory. This joint effort culminated in the establishment of a CNRS-affiliated joint research laboratory, reflecting her leadership in managing strategic partnerships with key industrial and governmental stakeholders, including aerospace and space agencies.

Contributions and Research Focus

Dr. Kahn’s research centers on nanoscience and its application to broad societal challenges such as energy, environment, space, aeronautics, and health. She has significantly contributed to the design and synthesis of hybrid nano-objects and multifunctional coatings. Her work focuses on controlling the structural and functional properties of nanoparticles particularly semiconductor and magnetic oxides and integrating them into real-world devices. Utilizing a safe-by-design philosophy, she innovates at the interface of molecular chemistry, surface science, and nanotechnology. Her research also emphasizes understanding surface-ligand interactions through advanced techniques like NMR spectroscopy, which is crucial for ensuring colloidal stability and optimizing material behavior in biological and industrial environments.

Impact and Influence

Dr. Kahn has established herself as a leader in applied nanosciences, successfully bridging fundamental chemistry with device integration. Her research has attracted substantial funding through over thirty competitive contracts, nearly half of which involve industrial collaborations. These projects have led to multiple patents with international extensions, showcasing her commitment to innovation and knowledge transfer. Beyond scientific output, her leadership in organizing large-scale conferences and her role in interdisciplinary teams underscore her influence across both academic and industrial landscapes.

Academic Citations

Her research excellence is reflected in her strong citation metrics. With thousands of citations and an impressive h-index, her work enjoys sustained recognition in the global scientific community. She has authored more than a hundred publications in peer-reviewed international journals, contributed to several book chapters, and is actively involved in reviewing and editorial responsibilities within leading scientific events and journals.

Technical Skills

Dr. Kahn possesses deep technical expertise in organometallic synthesis, nanoparticle surface chemistry, colloidal stability, and functional coatings. She has extensive experience in spectroscopic analysis, particularly NMR, for the investigation of ligand dynamics and surface coordination. Her proficiency extends to hybrid material fabrication, integration of nanoparticles into sensors and devices, and the development of safe-by-design methodologies. This multidisciplinary toolkit enables her to work effectively at the interface of chemistry, physics, and biology.

Teaching Experience

While her primary role is research-intensive, Dr. Kahn actively contributes to mentoring young researchers and postdoctoral fellows. She fosters scientific development through collaborative research, co-authorship, and direct supervision. Her mentorship style is marked by encouraging innovation and interdisciplinary approaches, preparing early-career scientists for careers in both academia and industry.

Legacy and Future Contributions

Dr. Kahn’s legacy is one of impactful science, interdisciplinary collaboration, and societal relevance. Her commitment to applied nanoscience has led to the development of novel materials and processes with potential applications in biotechnology, aerospace, and environmental technology. As co-director of a cutting-edge joint research lab, she continues to expand her collaborative reach, ensuring that her contributions influence the next generation of researchers. Her ongoing projects in multifunctional nanocomposites and hybrid processes promise continued breakthroughs in high-performance materials.

Notable Publications

Competition between ordered morphologies of functionalized silver nanoparticles elucidated by a joint experimental and multiscale theoretical study

Authors: David Loffreda; Nathalie Tarrat; Corinne Lacaze‑Dufaure; Franck Rabilloud; Katia Fajerwerg; Myrtil L. Kahn; Vincent Collière; Christine Lepetit; Pierre Fau
Journal: Nano Today
Year: 2025

Understanding Ion‑Exchange Processes in the Synthesis of ZnSₓ@ZnO₁₋ₓ Heterostructures from Controlled Sulfidation of ZnO Nanocrystals

Authors: Ekaterina Bellan; Martin Jakoobi; Vincent Collière; Yannick Coppel; Julien Trébosc; Olivier Lafon; Pierre Lecante; Paul Fleurat‑Lessard; Céline Dupont; Jean‑Cyrille Hierso; Pierre Fau; Katia Fajerwerg; Lauriane Pautrot‑d’Alençon; Thierry Le Mercier; Myrtil L. Kahn
Journal: Chemistry of Materials
Year: 2024

Spontaneous Emulsification of Organometallic Complexes Applied to the Synthesis of Nanocapsules Active for H₂ Release from Ammonia‑Borane

Authors: Olivier Gazil; Ludivine Rault; Déborah Iglicki; Vincent Collière; Gizem Karacaoglan; Didier Poinsot; Moad Bouzid; Jean‑Cyrille Hierso; Myrtil L. Kahn; Nick Virgilio; Fabienne Gauffre
Journal: Langmuir (The ACS Journal of Surfaces and Colloids)
Year: 2024

Synthesis of TiO₂/SBA‑15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement

Authors: Ons El Atti; Julie Hot; Katia Fajerwerg; Christian Lorber; Bénédicte Lebeau; Andrey Ryzhikov; Myrtil L. Kahn; Vincent Collière; Yannick Coppel; Nicolas Ratel‑Ramond; Philippe Ménini; Pierre Fau
Journal: Inorganics
Year: 2024

Conclusion

Dr. Myrtil L. Kahn stands as a prominent figure in nanoscience and coordination chemistry. Her pioneering research, strong industrial collaborations, and leadership in both national and international scientific communities demonstrate her eligibility for high-level scientific honors. Through her interdisciplinary vision and dedication to real-world impact, she continues to shape the future of materials science and remains an exemplary model for academic and industrial synergy.