John Reynolds | Analytical Chemistry | Best Researcher Award

Dr. John Reynolds | Analytical Chemistry | Best Researcher Award

Lawrence Livermore National Laboratory | United States

Dr. John G. Reynolds, PhD is a Senior Science Advisor for the Department of Homeland Security (DHS) Explosives Programs at Lawrence Livermore National Laboratory (LLNL), where he supports the Energetic Materials Center and the Forensics Science Center. With over four decades of experience, Dr. Reynolds is a recognized authority in nuclear weapons safety, energetic materials, and chemical weapons countermeasures. His subject matter expertise spans non-shock initiated reactions, thermal aging of energetic components, improvised explosives, and detection technologies. Dr. Reynolds earned his Ph.D. in Inorganic Chemistry from Stanford University, following a B.S. in Chemistry from the University of California, Berkeley, and an A.A. in Chemical Technology from Merritt College. He conducted postdoctoral research at Harvard and Caltech before entering industry at Chevron Research Company. Since joining LLNL, he has led major national security programs, including NEXESS and the Integrated Data Collection and Analysis Program, coordinating multi-laboratory collaborations across the DOE and DoD. He has authored over 250 publications and patents, with more than 4,257 citations on Google Scholar and 3,233 citations on Scopus. His h-index is 33 on both platforms, reflecting a sustained and impactful research career. He is the recipient of numerous honors, including the ACS Petroleum Chemistry Lifetime Achievement Award, multiple R&D 100 Awards, and the DOE Excellence Award. He also founded the LLNL OPCW verification laboratory, contributing to global chemical weapons monitoring. Dr. Reynolds’ work has significantly influenced homeland security, chemical detection, and explosives safety worldwide.

Profiles : Scopus | Orcid | Google scholar 

Featured Publications

  • Gash, A. E., Anderson, N. F., Montgomery, J. L., Hsu, P. C., Coffee, K. R., Guillen, G. J., Hernandez, P. A., Clarke, S. M., Zaka, F., & Reynolds, J. G. (2025). Properties of different LLM-105 preparations. Journal of Energetic Materials, 1–21.

  • Hoffman, D. M., Robertson, E. L., Zaka, F., DeHope, A. J., Harwood, V. L., Panasci-Nott, A. F., McClelland, M. A., & Reynolds, J. G. (2025). Development of parameters for the particle size distribution of TATB. Propellants, Explosives, Pyrotechnics, 50(1), e70007.

  • Moore, J. S., Morrison, K. D., Burnham, A. K., Racoveanu, A., Reynolds, J. G., & Coffee, K. R. (2024). TATB thermal decomposition: An improved kinetic model for explosive safety analysis. Propellants, Explosives, Pyrotechnics, 49(2), e202300237.

  • Morrison, K. D., Moore, J. S., Coffee, K. R., Koroglu, B., Burnham, A. K., & Reynolds, J. G. (2024). TATB thermal decomposition: Expanding the molecular profile with cryo-focused pyrolysis GC-MS. Propellants, Explosives, Pyrotechnics, 49(2), e202300268.

  • Burnham, A. K., Coffee, K. R., Klunder, G. L., Panasci-Nott, A. F., & Reynolds, J. G. (2024). Towards a heat- and mass-balanced kinetic model of TATB decomposition. Propellants, Explosives, Pyrotechnics, 49(2), e202300121.

Thulya Chakkumpulakkal Puthan Veettil | Analytical Chemistry | Women Researcher Award

Dr. Thulya Chakkumpulakkal Puthan Veettil | Analytical Chemistry | Women Researcher Award

Nutrition Care, Australia

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Thulya Chakkumpulakkal Puthan Veettil began her academic journey with a B.Sc. in Physics (2009-2012) from the University of Calicut, India, where she developed a strong foundation in materials science. She then pursued an M.Tech in Materials Science and Technology with a specialization in Nanotechnology (2013-2016) at the University of Mysore, India, securing an impressive GPA of 9.00/10.00. Her passion for advanced materials, point-of-care diagnostics, and biomedical applications led her to the Monash–Bath Global PhD Programme (2019-2024). During her Ph.D. at Monash University, Australia, and the University of Bath, UK, she conducted extensive research in disease diagnostics, microfluidic devices, antimicrobial resistance, biomaterials, and regenerative medicine.

🏛️ Professional Endeavors

Dr. Thulya has amassed significant experience in academia, research, and industry. Currently, she is serving as a Senior Quality Control Chemist at Nutrition Care Pharmaceuticals, Victoria, Australia (September 2024 – Present), where she plays a crucial role in ensuring pharmaceutical product quality and safety. Alongside her industry experience, she has an extensive teaching background as a Teaching Associate at Monash University (2021-2024), mentoring students in first-year to final-year undergraduate chemistry courses. She has also contributed to pharmacy education at the University of Bath, UK (2023-2024) and has taught master's courses in Materials Science and Engineering at Monash University. Her academic contributions are complemented by her role as a Programme Officer – Scientist B (2016-2018) at the Vikram A. Sarabhai Community Science Centre (VASCSC), India, where she was actively involved in STEM education and scientific research projects.

🔬 Research Focus and Contributions

Dr. Thulya’s research revolves around point-of-care disease diagnostics, antimicrobial resistance, biomaterials, regenerative medicine, and Process Analytical Technology (PAT). She has significantly contributed to the development of microfluidic point-of-care devices for early and precise disease detection. Her expertise in chemometrics and machine learning has enhanced diagnostic accuracy, making disease detection more efficient. She has also conducted extensive research on antimicrobial resistance (AMR) and its public health implications, contributing valuable insights into combatting drug-resistant pathogens. Additionally, her work in biomaterials and regenerative medicine has facilitated advancements in tissue engineering and drug delivery systems. Her research expertise extends to vibrational spectroscopic techniques such as Infrared (IR), Raman, UV-Vis-NIR, and Atomic Force Microscopy (AFM), which she employs for material characterization and quality control in pharmaceutical and biomedical applications.

🌍 Impact and Influence

Dr. Thulya’s research holds significant global relevance in healthcare, materials science, and pharmaceuticals. Her work in point-of-care diagnostics and antimicrobial resistance research is crucial in the fight against drug-resistant infections. By developing microfluidic devices and novel biomaterials, she is helping advance personalized medicine and regenerative therapies. Her expertise in Process Analytical Technology (PAT) methods ensures high-quality control standards in pharmaceutical manufacturing, impacting both industrial and clinical applications.

📈 Academic Citations & Recognition

As a dedicated researcher, Dr. Thulya has contributed to several peer-reviewed journal articles, book chapters, and industry reports, showcasing her commitment to advancing scientific knowledge. Her work has gained recognition in materials science, biomedical engineering, and pharmaceutical research, further solidifying her reputation as a pioneering scientist in her field.

🛠️ Technical Skills

Dr. Thulya possesses a comprehensive technical skill set, making her a versatile scientist in pharmaceutical, biomedical, and materials science research. Her expertise includes chemometrics and machine learning for data analysis, microfluidic device development for disease diagnostics, and advanced spectroscopy techniques such as Infrared (IR), Raman, UV-Vis-NIR, and AFM for material characterization. She is also skilled in Process Analytical Technology (PAT), quality control, and pharmaceutical product evaluation, ensuring compliance with industry standards.

📚 Teaching & Mentorship

With her strong academic background, Dr. Thulya has played a pivotal role as a Teaching Associate at Monash University and the University of Bath. She has mentored students at various levels, from undergraduate chemistry courses to final-year pharmacy and master's programs in materials science and engineering. Her interdisciplinary expertise allows her to provide valuable insights to students in chemistry, materials science, biomedical engineering, and pharmaceuticals. Her dedication to teaching and mentorship has contributed to the academic growth of many aspiring scientists and industry professionals.

🌟 Legacy and Future Contributions

Dr. Thulya Chakkumpulakkal Puthan Veettil continues to drive innovation in healthcare, pharmaceuticals, and materials science. Her contributions to point-of-care diagnostics, antimicrobial resistance research, biomaterials, and regenerative medicine will pave the way for new treatments, medical technologies, and quality control advancements. As she continues her journey as a Senior Quality Control Chemist in Australia’s pharmaceutical sector, she will play a key role in enhancing healthcare solutions and ensuring the safety and efficacy of medical products. Her passion for scientific discovery and translational research will undoubtedly leave a lasting impact on both academia and industry.

📖Notable Publications

  1. Evolution of vibrational biospectroscopy: multimodal techniques and miniaturisation supported by machine learning
    Authors: Mclean A., Veettil T.C.P., Giergiel M., Wood B.R.
    Journal: Vibrational Spectroscopy
    Year: 2024

  2. Revolutionising Health Science: A Historical and Future Perspective on Multimodal, Miniaturisation, and Machine Learning in Biospectroscopy
    Authors: Aaron McLean, Thulya Chakkumpulakkal Puthan Veettil, Magdalena Giergiel, Bayden R. Wood
    Journal: Preprint
    Year: 2024

  3. A Multimodal Spectroscopic Approach Combining Mid-infrared and Near-infrared for Discriminating Gram-positive and Gram-negative Bacteria
    Authors: Thulya Chakkumpulakkal Puthan Veettil, Kamila Kochan, Galain C. Williams, Kimberley Bourke, Xenia Kostoulias, Anton Y. Peleg, Dena Lyras, Paul A. De Bank, David Perez-Guaita, Bayden R. Wood
    Journal: Analytical Chemistry
    Year: 2024

  4. Illuminating Malaria: Spectroscopy’s Vital Role in Diagnosis and Research
    Authors: Bayden R. Wood, John A. Adegoke, Thulya Chakkumpulakkal Puthan Veettil, Ankit Dodla, Keith Dias, Neha Mehlawat, Callum Gassner, Victoria Stock, Sarika Joshi, Magdalena Giergiel et al.
    Journal: Spectroscopy Journal
    Year: 2024

  5. Ultrafast and Ultrasensitive Bacterial Detection in Biofluids: Leveraging Resazurin as a Visible and Fluorescent Spectroscopic Marker
    Authors: Neha Mehlawat, Thulya Chakkumpulakkal Puthan Veettil, Rosemary Sharpin, Bayden R. Wood, Tuncay Alan
    Journal: Analytical Chemistry
    Year: 2024

 

 

4o