Rajkumar Sokkalingam | Physical Chemistry | Best Researcher Award

Dr. Rajkumar Sokkalingam | Physical Chemistry | Best Researcher Award

Bharathidasan University, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Rajkumar Sokkalingam began his academic journey with a Bachelor’s degree in Physics from National College (Autonomous), Tiruchirappalli. He then pursued a Postgraduate Diploma in Scientific Interfacing at Bishop Heber College (Autonomous), Tiruchirappalli, where he specialized in advanced scientific interfacing. He continued his studies at the same institution with a Master’s degree in Physics. Currently, he has submitted his Ph.D. thesis at Bharathidasan University, focusing on high-pressure investigations of rare-earth intermetallic compounds, specifically exploring the interplay of charge density waves and magnetic ordering in Sm₂Ru₃Ge₅, GdNiC₂, and NdNiC₂. His academic progression reflects a steady and determined path toward advanced experimental condensed matter research.

👨‍🔬 Professional Endeavors

Dr. Rajkumar has actively participated in several prestigious national-level research training programs and scientific platforms. These include the Indian Nanoelectronics User Program at the Indian Institute of Science, Bangalore, and the Synergistic Training Program Utilizing the Scientific and Technological Infrastructure conducted by the University of Kerala. His involvement in a summer training programme at Bishop Heber College further highlights his commitment to continuous academic development. His postgraduate research works demonstrate a blend of theoretical understanding and technical execution, including a study on separability criteria using symmetric informationally complete measurements and a traffic signal controller developed through LabVIEW programming.

🔬 Contributions and Research Focus

Specializing in condensed matter physics, Dr. Rajkumar’s research interests lie in strongly correlated electron systems and energy materials. His doctoral research explores how rare-earth intermetallic compounds behave under high-pressure conditions, particularly examining electronic phase transitions involving charge density waves and magnetism. His earlier academic work also showcases a strong grasp of quantum information science and embedded system design, making his expertise relevant to both fundamental physics and technological applications.

🌍 Impact and Influence

Dr. Rajkumar’s impact within the research community is visible through his role as a peer reviewer for multiple high-impact international journals under Elsevier, including the Journal of Molecular Structure, Environmental Research, the Journal of the Taiwan Institute of Chemical Engineers, and Fuel. These positions indicate his growing influence and scientific credibility in material science, applied physics, and chemical engineering research circles. His participation in elite research training initiatives further enhances his reputation as an emerging expert in his field.

📚 Academic Citations and Publications

With his Ph.D. thesis submitted, Dr. Rajkumar is poised to contribute significantly to academic literature in the areas of high-pressure physics, quantum materials, and correlated systems. His forthcoming publications are expected to provide deeper insights into material behavior under extreme conditions, reinforcing his position as a promising researcher with a strong foundation in both experimental techniques and theoretical modeling.

🛠️ Technical Skills and Instrumentation Expertise

Dr. Rajkumar possesses hands-on experience with several advanced research instruments essential for modern materials science. These include cryogen-free CCR-VTI systems, X-ray diffractometers, shock tube setups, high-temperature furnaces, and piston cylinder pressure cells capable of high-pressure resistivity measurements. In addition, he is proficient in software tools such as GSAS II for Rietveld refinement, Fit2D for data reduction, LabVIEW for instrument control and embedded system design, MATLAB for numerical computation, Origin for data analysis and graphing, and LaTeX for professional documentation and publication.

🧑‍🏫 Teaching Experience and Mentorship

In addition to his research, Dr. Rajkumar has actively supported academic instruction by assisting in laboratory courses and mentoring undergraduate students. His ability to integrate theory with practice, especially in experimental setups and data interpretation, allows him to guide students effectively and foster a deeper understanding of physics.

🌟 Legacy and Future Contributions

Dr. Rajkumar is a dedicated and forward-thinking researcher whose interdisciplinary skill set equips him to contribute meaningfully to the future of condensed matter and quantum materials research. With a strong academic base, growing publication record, and active engagement in national scientific programs, he is well-positioned to drive innovation in energy materials, magnetism, and high-pressure science. His future contributions are expected to have a lasting impact on both research and education in physical sciences.

📖Notable Publications

  • Investigation of exchange bias and magnetoresistance in the Si substituted Ni-Mn-In ribbon alloys
    Authors: P. Sivaprakash, S.E. Muthu, J.J. Infanta, S. Rajkumar, I. Kim, S. Arumugam
    Journal: Materials Science and Engineering: B
    Year: 2022

  • Structural and vibrational properties of cage-type Sc₅Ru₆Sn₁₈ superconductor under pressure using synchrotron X-ray diffraction and Raman spectroscopy
    Authors: M. Sundaramoorthy, B. Joseph, G. Lingannan, P.K. Mondal, R. Sokkalingam, et al.
    Journal: Journal of Alloys and Compounds
    Year: 2024

  • Structure, morphology, and magnetic properties of Fe microparticles as impact on shock waves
    Authors: R. Jagadeesh, S. Rajkumar, S. Arumugam, M. Kannan
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2023

  • Evidence of structural modulations induced by a charge density wave transition in orthorhombic Sm₂Ru₃Ge₅
    Authors: R. Sokkalingam, G. Lingannan, M. Sundaramoorthy, C.S. Lue, C.N. Kuo, et al.
    Journal: Solid State Communications
    Year: 2023

  • Chemical Pressure-Induced enhancement of electrochemical performance in Ni₁₋ₓCuₓTe₂ (x = 0 and 0.10) layered compounds
    Authors: R. Sokkalingam, M. Krishnan, J.S.K. Pitchai, S. Periyasamy, A.K. Bojarajan, et al.
    Journal: Electrochemistry Communications
    Year: 2025

 

Shufeng Pang | Physical Chemistry | Best Researcher Award

Prof. Shufeng Pang | Physical Chemistry | Best Researcher Award

Beijing Institute of Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Shufeng Pang began his academic journey with a Ph.D. in Chemistry from Nanjing University (1998–2000), where he conducted spectroscopic studies on Langmuir-Blodgett (LB) film structures. His early work laid the foundation for a multidisciplinary research career combining surface science, colloidal chemistry, and environmental studies.

🧪 Professional Endeavors

After completing his Ph.D., he pursued postdoctoral research at the Institute of Chemistry, Chinese Academy of Sciences (2001–2003), focusing on structural investigations of colloidal systems. He then expanded his research internationally as a Research Associate at the Tokyo University of Science, Japan (2003–2005), working on surface modification and self-assembly behavior of gold nanoparticles. Since 2005, he has been serving as an Associate Professor at the Beijing Institute of Technology, where his recent research centers on the physical and chemical properties of atmospheric aerosols.

🔬 Contributions and Research Focus

Prof. Pang has made notable contributions in nanoparticle synthesis, interfacial modification, and atmospheric aerosol chemistry. He developed asymmetric surface-modified gold nanoparticles through interfacial techniques and explored their aggregation and ordered assembly. His studies on aerosol systems revealed critical insights into the hygroscopicity of inorganic/organic salts, intraparticle chemical processes, and gas-particle interactions. One of his most significant findings was the discovery of a humidification-induced phase transition in mixed aerosols containing polyhydroxy organic acids and inorganic salts, which offered a mechanistic explanation for component redistribution in atmospheric particles.

🧠 Research Projects and Collaborations

As Principal Investigator, Prof. Pang has led three NSFC-funded research projects. Project No. 20603002 focused on the synthesis and self-assembly of Janus nanoparticles. Project No. 21373026 explored the in-situ observation of new particle formation and aerosol growth using FTIR spectroscopy. Project No. 91644101 investigated the burst and growth of new particles as influenced by ambient relative humidity through FTIR techniques. He collaborates with Prof. Yunhong Zhang in conducting advanced spectroscopic studies on aerosols.

🌍 Impact and Influence

Prof. Pang’s work has important implications for understanding urban air pollution and atmospheric chemistry. His investigation into copper-catalyzed SO₂ oxidation by NO₂ within aerosols and the resulting sulfate formation has contributed to the field of environmental science. His studies aid in pollution modeling, aerosol transformation mechanisms, and the evaluation of climate-related aerosol effects.

📚 Academic Citations and Recognition

Although specific citation counts were not detailed, Prof. Pang’s research—particularly in aerosol spectroscopy and nanomaterials—has gained significant traction in the scientific community, especially among those focused on air quality, environmental chemistry, and nanoparticle behavior.

🛠️ Technical Skills

He possesses strong technical expertise in FTIR spectroscopy, colloidal and interfacial chemistry, Langmuir-Blodgett film techniques, gold nanoparticle synthesis, and the structural characterization of aerosols. His proficiency in in-situ analysis makes him a leader in observing real-time chemical processes in atmospheric systems.

👨‍🏫 Teaching and Mentorship

At Beijing Institute of Technology, Prof. Pang has consistently merged research with education, mentoring undergraduate and graduate students in physical chemistry, spectroscopy, and atmospheric research. His practical guidance and academic supervision have contributed to the development of many young scientists.

🌟 Legacy and Future Contributions

Prof. Pang aims to continue advancing the understanding of aerosol dynamics and their impact on climate and air quality. His future research will likely emphasize interdisciplinary approaches to atmospheric chemistry and nanoscience, making vital contributions to environmental policy, sustainable development, and academic innovation. His career reflects a dedication to both fundamental research and applied science, positioning him as a distinguished figure in modern physical and environmental chemistry.

📖Notable Publications

Sulfate formation through copper-catalyzed SO2 oxidation by NO2 at aerosol surfaces

  • Authors: P. Liu, Y. Liu, Q. Huang, Y. Zhang, M. Ge

  • Journal: npj Climate and Atmospheric Science

  • Year: 2025

Hydrogel network formation triggers atypical hygroscopic behavior in atmospheric aerosols

  • Authors: F. Dong, Q. Huang, S. Pang, Y. Zhang

  • Journal: Science of the Total Environment

  • Year: 2024

The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols

  • Authors: H. Yang, F. Dong, L. Xia, S. Pang, Y. Zhang

  • Journal: Atmospheric Chemistry and Physics

  • Year: 2024

Rethinking urban haze formation: Atmospheric sulfite conversion rate scales with aerosol surface area, not volume

  • Authors: L. Li, P. Liu, Q. Huang, Y. Zhang, M. Ge

  • Journal: One Earth

  • Year: 2024

Compositional evolution for mixed aerosols containing gluconic acid and typical nitrate and the effect of multiply factors on hygroscopicity

  • Authors: Y. Zhu, S. Pang, Y. Zhang

  • Journal: Journal of Environmental Sciences

  • Year: 2024

Single Droplet Tweezer Revealing the Reaction Mechanism of Mn(II)-Catalyzed SO2 Oxidation

  • Authors: X. Cao, Y. Liu, Q. Huang, Y. Zhang, M. Ge

  • Journal: Environmental Science and Technology

  • Year: 2024