José Piñero | Physical Chemistry | Research Excellence Award

Prof. Dr. José Piñero | Physical Chemistry | Research Excellence Award

University of Cadiz  | Spain

Dr. José Carlos Piñero Charlo is a theoretical physicist specializing in physical chemistry and surface science, with strong expertise in advanced materials characterization. His research integrates theoretical modeling with high-resolution experimental techniques, particularly X-ray Photoelectron Spectroscopy, to elucidate surface terminations and electronic properties of semiconductor materials. He has made significant contributions to diamond-based power electronics, energy harvesting systems, and quantum sensing technologies. His recent work on perovskite quantum dots advances optoelectronic performance, reinforcing his interdisciplinary impact across materials science, nanotechnology, and energy applications.

Citation Metrics (Scopus)

  1000
  700
  400
   100
     0

Citations
906

Documents
49

h-index
16

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Yuhua Yang | Materials Chemistry | Best Researcher Award

Dr. Yuhua Yang | Materials Chemistry | Best Researcher Award

Jiangxi Science and Technology Normal University | China

Dr. Yuhua Yang is an accomplished materials scientist specializing in nanomaterials synthesis and advanced electrochemical energy-storage systems, with a strong focus on lithium-ion and lithium-sulfur battery technologies. He holds a bachelor’s degree from Nanchang University, a master’s degree from Beijing University of Posts and Telecommunications, and a Ph.D. from Hunan University. He has significant industrial and academic experience, having served in roles at Haier Group, China Netcom Corporation, and Yichun University before joining the School of Materials and Energy at Jiangxi Science and Technology Normal University. His research portfolio centers on bio-derived nanostructures and engineered electrode materials designed to overcome critical battery challenges, including volume expansion, low coulombic efficiency, and poor cycle stability. Representative studies include innovative Sn-based and Ni-based electrodes derived from bacterial carbon and natural biotemplates, such as Bacillus subtilis-based carbon @Sn anodes and yolk-shell Ni₃P-carbon@graphene frameworks, demonstrating enhanced electrochemical stability and durability. His recent publications also explore advanced core-shell architectures and flexible bacterial-carbon/graphene systems , reflecting his continuing drive toward high-capacity, stable, and flexible battery platforms. Notably, his contribution to bacteria-derived carbon materials for Li-S batteries published in Nano Letters  has been cited 110 times, underscoring international recognition of his work. Across 15 indexed publications, Dr. Yang has accumulated 515 citations from 487 documents and holds an h-index of 7 in Scopus, indicating strong and growing impact in the fields of materials chemistry and energy storage. His innovative approach of integrating biological templates with advanced nanostructuring strategies provides sustainable pathways for next-generation battery materials, positioning him as a rising leader in energy and nanomaterials research.

Profile : Scopus 

Featured Publications

Li, F., Han, P.-T., … Yang, Y.-H. (2025). The core-shell structure of bacteria-based C@Sn/Carbon nanotubes exhibits super-stable cycling performance for lithium-ion battery anodes. Journal of Power Sources, 645.

Li, F., Han, P.-T., … Yang, Y.-H. (2025). Flexible Co₃(PO₄)₂@ bacterial carbon/reduced graphene oxides for Li-ion batteries anode. Materials Letters, 389.

Zhang, Z.-W., Li, F., … Yang, Y.-H. (2024). Ultra-high first coulombic efficiency and stable cycle performance of bacterial-based C/Sn/SnS nanomaterial for lithium-ion battery anodes. Chemical Physics Letters, 840.

Yang, Y.-H., Xi, Z.-C., … Zhou, J. (2023). Gram-positive bacteria Bacillus subtilis-based carbon @ Sn anode for high-performance Li-ion batteries. Journal of Materials Science: Materials in Electronics, 34(8).

Yang, Y.-H., Zhang, Z.-W., … Zhou, J. (2022). The photoluminescence materials of green light Gd₂O₃:Eu and its influencing factors. Journal of the Physical Society of Japan, 91(11).