Fei Yu | Analytical Chemistry | Best Researcher Award

Mr. Fei Yu | Analytical Chemistry | Best Researcher Award

Shanghai Tenth People's Hospital, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Yu Fei’s academic journey began with a Bachelor of Medicine (B.Med.) in Nuclear Medicine from Soochow University (1996-2001). This foundational education provided a strong background in medical imaging and nuclear diagnostics. Building on this, Yu Fei pursued a Master of Science (M.Sc.) in Public Health at Fudan University (2005-2008), which broadened his expertise in epidemiology, healthcare management, and disease prevention strategies. To further specialize in nuclear medicine, he completed a Doctor of Medicine (Ph.D.) at Tongji University (2009-2012), focusing on advanced medical imaging, radiopharmaceuticals, and nuclear diagnostics.

🏥 Professional Endeavors

Yu Fei has been an integral part of Tongji University and Shanghai Tenth People’s Hospital, where he has steadily progressed through various roles:

  • Physician (2001-2007) – Gaining hands-on clinical experience in diagnostic imaging and nuclear medicine procedures.
  • Attending Physician (2007-2013) – Expanding his clinical expertise while taking on responsibilities in patient care, research, and teaching.
  • Associate Chief Physician (2013-2018) – Playing a pivotal role in medical research and supervising junior physicians.
  • Chief Physician (2018-Present) – Leading advancements in nuclear medicine, guiding medical teams, and contributing to innovative research.

His steady career progression reflects dedication, expertise, and leadership in the medical field.

🔬 Contributions and Research Focus

Yu Fei’s research is centered on nuclear medicine and public health, with a particular focus on:

  • Radiopharmaceuticals and Molecular Imaging – Enhancing early disease detection and treatment effectiveness.
  • Oncological Imaging – Using PET/CT and SPECT for cancer diagnostics and therapy assessment.
  • Nuclear Cardiology – Advancing non-invasive imaging techniques for cardiovascular diseases.
  • Public Health and Preventive Medicine – Contributing to healthcare policies and epidemiological studies.

His work has improved diagnostic accuracy, influenced treatment strategies, and contributed to advancements in personalized medicine.

🌍 Impact and Influence

As a Chief Physician at Shanghai Tenth People’s Hospital, Yu Fei has significantly impacted the fields of nuclear medicine and medical imaging. His leadership in clinical applications, research innovations, and academic mentorship has shaped both medical practice and scientific advancements. His contributions in oncology, cardiology, and public health imaging continue to influence medical professionals locally and internationally.

📚 Academic Citations and Publications

Yu Fei has published numerous research papers in leading medical journals, focusing on nuclear medicine applications, radiopharmaceuticals, and imaging advancements. His research has been widely cited, reflecting his influence in the academic and medical research communities.

🛠️ Technical Skills

With extensive experience in nuclear medicine and diagnostic imaging, Yu Fei is proficient in:

  • Positron Emission Tomography (PET/CT)
  • Single Photon Emission Computed Tomography (SPECT)
  • Radiopharmaceutical Development and Application
  • Cardiac and Oncological Nuclear Imaging
  • Epidemiological Data Analysis in Public Health

His technical expertise enables accurate diagnosis and cutting-edge research in nuclear imaging.

👨‍🏫 Teaching and Mentorship

Yu Fei has played a key role in training and mentoring medical students, residents, and junior physicians at Tongji University and Shanghai Tenth People’s Hospital. His teaching contributions include:

  • Clinical Training in Nuclear Medicine – Preparing future specialists with hands-on experience.
  • Medical Research Supervision – Guiding students in conducting and publishing research.
  • Continuing Medical Education (CME) Programs – Enhancing the skills of practicing professionals in nuclear medicine.

His mentorship has fostered the growth of future medical leaders and researchers.

🚀 Legacy and Future Contributions

Yu Fei’s career has already left a significant mark on nuclear medicine and medical imaging. Looking ahead, his goals include:

  • Expanding Research in Molecular Imaging – Improving early disease detection techniques.
  • Developing Innovative Radiopharmaceuticals – Enhancing therapeutic applications.
  • Advancing Public Health Imaging – Integrating nuclear medicine in preventive healthcare.
  • Mentoring the Next Generation – Continuing to train and inspire future medical professionals.

📖Notable Publications

Minal Ghante | Analytical Chemistry | Best Researcher Award

Dr. Minal Ghante | Analytical Chemistry | Best Researcher Award

Smt. Kashibai Navale College of Pharmacy, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

From the outset of your academic journey, you demonstrated a keen interest in chemistry and material sciences, which led you to pursue higher education in this field. Your Bachelor’s, Master’s, and Ph.D. studies at Thiruvalluvar University provided a solid foundation in chemistry, focusing on nanomaterials and electrocatalysis. Your early research efforts delved into photocatalysis and energy storage systems, setting the stage for your future contributions to renewable energy research.

🏆 Professional Endeavors

Your professional career has been shaped by roles in academia and research, particularly through your postdoctoral fellowship at Chulalongkorn University, Bangkok, Thailand. Under the mentorship of Dr. Piyasan Praserthdam, you continued your explorations in electrocatalysis and nanomaterials. Your expertise spans energy storage, hydrogen evolution reaction (HER), and catalysis, with a specific focus on sustainable and platinum-free electrocatalysts.

🔬 Contributions and Research Focus

A key area of your research revolves around the design and development of nanomaterials for energy conversion. Your work in HER and OER electrocatalysis has played a pivotal role in advancing green hydrogen technology. You have also contributed to the study of supercapacitors, electrochemical impedance spectroscopy, and photocatalytic materials, making significant strides toward efficient and cost-effective energy solutions. Your Ph.D. thesis focused on the synthesis, characterization, and application of platinum-free electrocatalysts, demonstrating your commitment to sustainable research.

🌍 Impact and Influence

Your research has had a profound impact on the field of sustainable energy and nanotechnology, contributing to the global push for cleaner energy solutions. Through international collaborations and scientific publications, your work has influenced both academic circles and industrial applications. The practical applications of your research in energy storage and hydrogen production have the potential to revolutionize renewable energy technologies.

📚 Academic Citations and Publications

Your scholarly contributions include several SCI-indexed publications, showcasing your research in renowned journals and international conferences. Your work has garnered significant recognition, with numerous citations in leading scientific papers. This highlights the relevance and impact of your findings in the scientific community.

🛠️ Technical Skills

With a strong background in analytical and electrochemical techniques, you possess expertise in:

👨‍🏫 Teaching and Mentorship

Throughout your academic career, you have actively mentored and guided students, fostering the next generation of researchers. Your involvement in student projects during your Ph.D. and postdoctoral tenure has played a crucial role in their academic and professional development. Your dedication to knowledge-sharing and mentorship is a testament to your commitment to academic excellence.

🚀 Legacy and Future Contributions

Your long-term vision includes expanding the frontiers of green energy research by focusing on sustainable electrocatalysts and advanced nanomaterials. Your work has already paved the way for innovative energy storage systems, and you continue to explore cost-effective solutions for hydrogen production and environmental sustainability. Moving forward, you aim to contribute to cutting-edge research, mentor upcoming scientists, and drive impactful collaborations worldwide.

📖Notable Publications

  • RP-HPLC and HPTLC method development and validation for estimation of dolutegravir in bulk and tablet dosage form
    Authors: Ghante, M.R.; Sawant, S.D.; Undre, M.; Jagtap, S.G.; Kulkarni, P.; Nikam, V.S.
    Journal: Indian Drugs
    Year: 2019

  • Stability indicating method development and validation of finasteride by high-performance thin-layer chromatography studies
    Authors: Sawant, S.; Ghante, M.
    Journal: Asian Journal of Chemistry
    Year: 2017

  • Development and validation of stability indicating method for darunavir with forced degradation studies using LC-ESI-MS/MS
    Authors: Ghante, M.; Sawant, S.D.
    Journal: Asian Journal of Chemistry
    Year: 2016

  • Development and validation of UV spectrophotometric method for estimation of Darunavir ethanolate in bulk and tablet dosage form
    Authors: Ghante, M.R.; Shelar, R.S.; Sawant, S.D.; Kadam, M.M.
    Journal: International Journal of Pharmacy and Pharmaceutical Sciences
    Year: 2014

  • Development and validation of UV spectrophotometric methods for estimation of Atazanavir sulphate in bulk and tablet dosage form
    Authors: Ghante, M.R.; Kadam, M.M.; Sawant, S.D.; Shelar, R.S.
    Journal: International Journal of Pharmacy and Pharmaceutical Sciences
    Year: 2014

 

Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Mr. Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Bangladesh University of Textiles, Bangladesh

👨‍🎓Profiles

📘 Early Academic Pursuits

The academic journey began with a B.Sc. in Mechanical Engineering from Bangladesh University of Engineering and Technology (BUET) in 2014. During this phase, research was conducted on electricity generation from compression of speed breakers, demonstrating an early interest in applied engineering solutions. Further academic advancement led to a M.S. in Mechanical Design and Production Engineering from Konkuk University, South Korea (2020-2022), where the research focused on developing a pre-programmed microdroplet generator for controlling chemical concentrations. Currently, pursuing a Ph.D. in Electrical Engineering at Pennsylvania State University (2022-2026), integrating Recombinase Polymerase Amplification (RPA) with nanopore sensing for point-of-care disease detection.

🏆 Professional Endeavors

With over six years of teaching and research experience, the professional journey includes roles as Lecturer and Assistant Professor at Bangladesh University of Textiles (BUTEX) and BGMEA University of Fashion & Technology (BUFT) from 2014 to 2020. Transitioning into the research domain, positions were held as a Graduate Research Assistant at Konkuk University (2020-2022) and Pennsylvania State University (2022-Present). Recently, appointed as a Visiting Scholar at Indiana University, Bloomington (2025-Present), further broadening the academic and research exposure.

🔬 Contributions and Research Focus

A strong research background in point-of-care (POC) devices, disease diagnosis, and sensor technology has led to significant contributions in designing microfluidic devices and nanopore sensors. Proficiency in biochemical reaction methodologies, including Polymerase Chain Reaction (PCR), Recombinase Polymerase Amplification (RPA), Loop-mediated Isothermal Amplification (LAMP), and CRISPR/Cas12, has played a crucial role in developing diagnostic tools for infectious diseases like Monkeypox, SARS-COVID, Cowpox, and HIV.

🌍 Impact and Influence

The research has had a profound impact on healthcare and diagnostic technologies, especially in early detection methods for infectious diseases. The work in integrating machine learning algorithms with sensor-based diagnostics has pushed the boundaries of automation and accuracy in medical testing. The interdisciplinary nature of the research—bridging mechanical design, electrical engineering, and biotechnology—positions it as a key contributor to next-generation disease detection systems.

📊 Academic Citations & Publications

With a growing influence in the academic world, the research work has been recognized with 67 citations, 18 published papers, and 6 conference and poster presentations. The continuous contribution to high-impact journals and international conferences highlights the commitment to advancing knowledge in biomedical engineering and sensor technology.

🛠️ Technical Skills

Expertise spans across instrumentation, fabrication, and analysis, including hands-on experience with: 3D Printing: Asiga UV Max X43, Ultimaker 3.0, Laser Systems: Universal Laser Systems, Microscopy: Optical Microscopes, Nikon Ti U Inverted Camera, pco.edge 5.5, Sensors & Electronics: Pressure Sensors (PX-309 series, Eve flow series), Axopatch 200b, Molecular Diagnostic Tools: Thermal Cycler (BIORAD T100), Plasma Treatment Machines, Software & Programming: MATLAB, Python, and Machine Learning Algorithms.

🎓 Teaching Experience

With over six years of teaching experience, expertise has been shared in Mechanical Engineering, Engineering Drawing, Machine Design, MATLAB, and Python programming with undergraduate students. The ability to bridge theoretical knowledge with hands-on applications has benefited students in engineering and research domains.

🌱 Legacy and Future Contributions

Looking ahead, the focus remains on developing innovative diagnostic devices that are cost-effective, rapid, and highly accurate for real-world applications. The integration of machine learning with nanopore sensors will continue to be a significant area of exploration. Additionally, mentoring future researchers and students in interdisciplinary fields will be an integral part of academic and professional contributions.

📖Notable Publications

Sensitive and specific CRISPR-Cas12a assisted nanopore with RPA for Monkeypox detection
Authors: MA Ahamed, MAU Khalid, M Dong, AJ Politza, Z Zhang, A Kshirsagar, ...
Journal: Biosensors and Bioelectronics 246, 115866
Year: 2024

Electricity generation from speed breaker by air compression method using wells turbine
Authors: MA Ahamed, MI Reza, M Al-Amin
Journal: Journal of Advanced Engineering and Computation 4 (2), 140-148
Year: 2020

Pre-programmed microdroplet generator to control wide-ranging chemical concentrations
Authors: MA Ahamed, G Kim, Z Li, SJ Kim
Journal: Analytica Chimica Acta 1236, 340587
Year: 2022

Functionalized Cellulose for Textile Organic Pollutant Treatment: a Comprehensive Review
Authors: MM Rashid, N Abir, SAB Kamal, M Al-Amin, MA Ahamed, MT Islam, ...
Journal: Water Conservation Science and Engineering 9 (11)
Year: 2024

A Portable Centrifuge for Universal Nucleic Acid Extraction at the Point-of-Care
Authors: AJ Politza, T Liu, A Kshirsagar, M Dong, MA Ahamed, W Guan
Journal: Available at SSRN 4781228
Year: 2024