Yeshui Zhang | Chemical Engineering | Best Researcher Award

Dr. Yeshui Zhang | Chemical Engineering | Best Researcher Award

University of Aberdeen, United Kingdom

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yeshui Zhang began her academic journey with a BSc in Environmental Management from the University of Birmingham, where she established a strong foundation for her multidisciplinary approach to energy and environmental engineering. She then pursued an MSc in Environmental & Energy Engineering at the University of Sheffield, working under the guidance of Prof. Agba Salman. Her academic path culminated in a PhD in Chemical & Process Engineering at the University of Leeds (2014–2017), where her thesis focused on hydrogen and carbon nanotube materials derived from the pyrolysis-catalysis of waste, supervised by Prof. Paul Williams and Dr. Chunfei Wu.

💼 Professional Endeavors

Dr. Zhang currently serves as a Lecturer in Chemical Engineering at the University of Aberdeen, a position she has held since December 2021. She contributes to both research and teaching within the School of Engineering. Prior to this, she held several research-intensive roles at University College London (UCL), including a prestigious Faraday Institution Research Fellowship (2019–2021) on the NEXTRODE project, which aimed to enhance operando metrology in Li-ion battery electrode manufacturing. From 2018 to 2019, she worked as a Postdoctoral Research Associate, developing quartz crystal microbalance techniques for high-temperature applications—an initiative funded by the Qatar National Research Fund. Dr. Zhang also provided consultancy to Alchemy TT Corporation in the U.S., focusing on carbon nanomaterials from waste plastics, and previously served as Overseas Outreach Manager for Nangyang Weiter Chemical in China.

🔬 Research Focus and Contributions

Dr. Zhang’s research lies at the intersection of sustainable energy, waste valorization, and advanced materials. Her areas of expertise include energy storage materials, lithium-ion battery manufacturing, hydrogen production, plastic waste pyrolysis-catalysis, and the synthesis of carbon nanotubes. She is pioneering new approaches in in-situ acoustic diagnostics and high-temperature quartz crystal microbalance (QCM) systems, advancing real-time analysis in energy materials research. Her work is firmly rooted in circular economy principles, particularly with respect to converting plastic waste into valuable energy resources.

🌱 Impact and Influence

Dr. Zhang’s work is making a significant impact on green technology development and sustainability. She offers scalable, practical solutions for transforming plastic waste into high-value materials such as hydrogen and carbon nanostructures. Her role in the NEXTRODE project is helping to reshape Li-ion battery manufacturing through improved metrological precision and efficiency, contributing meaningfully to the global transition toward low-carbon energy systems.

📈 Academic Citations and Recognition

While specific citation metrics are not provided, Dr. Zhang’s continuous involvement in high-profile research projects—such as those funded by the Faraday Institution and the Qatar National Research Fund—reflects her growing academic stature and the broad relevance of her work in chemical engineering, energy technology, and materials science.

🛠️ Technical Skills

Dr. Zhang possesses a diverse and advanced technical skill set, including expertise in pyrolysis-catalysis systems, high-temperature QCM analysis, operando measurement technologies, battery metrology, and the synthesis of nanomaterials from recycled waste. She is also developing innovative acoustic monitoring systems for in-situ diagnostics in complex energy environments.

👩‍🏫 Teaching Experience

As a Lecturer at the University of Aberdeen, Dr. Zhang is actively involved in teaching and mentoring students in chemical and process engineering. She brings her cutting-edge research into the classroom, inspiring innovation and real-world application among her students. Her interdisciplinary background allows her to teach across a range of topics, including energy systems, environmental remediation, and advanced materials.

🌍 Legacy and Future Contributions

Dr. Zhang is positioned to become a leading figure in circular energy systems and sustainable battery technology development. Her future research will continue to integrate waste management with the creation of high-performance materials, particularly in the areas of green hydrogen and carbon-negative technologies. Through her academic and industrial partnerships, she is driving innovations that align with global sustainability goals and a cleaner, more efficient energy future.

📖Notable Publications

Catalysis and absorption behaviors of the shelled-hollow CaO-MgO microspheres on product distributions and desulfurization during waste tire fast pyrolysis
Authors: Qu, B.; Zhang, Y.; Wang, T.; Li, A.; Ji, G.
Journal: Fuel
Year: 2025

Effect of reduction temperatures of Ni-modified zeolites on the product distribution, catalyst deactivation, and reaction mechanism during polypropylene pyrolysis
Authors: Qu, B.; Wang, T.; Ji, X.; Zhang, Y.; Ji, G.
Journal: Fuel
Year: 2025

Pyrolysis-catalytic gasification of plastic waste for hydrogen-rich syngas production with hybrid-functional Ni-CaO–Ca₂SiO₄ catalyst
Authors: Qin, T.; Ji, G.; Qu, B.; Derksen, J.J.; Zhang, Y.
Journal: Carbon Capture Science and Technology
Year: 2025

Ni transformation and hydrochar properties during hydrothermal carbonization of cellulose
Authors: Zhao, P.; Yu, S.; Zhang, Y.; Zhang, Y.; Zhou, H.
Journal: Fuel
Year: 2025

Pyrolysis-catalysis of waste tire to enhance the aromatics selectivity via metal-modified ZSM-5 catalysts
Authors: Qu, B.; Zhang, Y.; Wang, T.; Li, A.; Ji, G.
Journal: Process Safety and Environmental Protection
Year: 2024