Yi Zhang | Physical Chemistry | Best Researcher Award

Prof. Dr. Yi zhang | Physical chemistry | Best Researcher Award

Nanjing University, china

👨‍🎓Profiles

Early Academic Pursuits

Professor Yi Zhang's academic journey began with a Bachelor of Science degree in Physics from the prestigious Peking University (2002–2006). Demonstrating early promise, he pursued a Ph.D. in Condensed Matter Physics at the Institute of Physics, Chinese Academy of Sciences (2006–2011), under the supervision of Prof. Qi-Kun Xue. His formative academic years were marked by a deep immersion in solid-state physics, particularly focusing on advanced material growth techniques and surface science.

Professional Endeavors

After earning his doctorate, Prof. Zhang embarked on a globally collaborative postdoctoral fellowship (2011–2015), jointly hosted by the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and the Stanford Institute for Materials and Energy Sciences (SIMES), under the mentorship of renowned physicist Prof. Zhi-Xun Shen. In 2015, he returned to China as a full Professor at the School of Physics, Nanjing University, where he began to lead his own independent research group.

Contributions and Research Focus

Prof. Zhang's research is at the forefront of experimental condensed matter physics. His work combines molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to explore the electronic properties of two-dimensional (2D) materials, topological insulators, and magnetic materials. Notable achievements include the MBE growth and ARPES characterization of topological Dirac semimetals (Na₃Bi), topological crystalline insulators (SnTe (111)), and 2D transition metal dichalcogenides (MoSe₂, WSe₂, NbSe₂). His pioneering studies on the band structure transitions in 2D materials and topological systems have significantly advanced our understanding of quantum materials at the atomic scale.

Impact and Influence

Professor Zhang is widely recognized for his influential scientific output. He was named a Clarivate Highly Cited Researcher in 2023, a testament to the global impact of his publications across multiple disciplines. In 2011, his research was ranked among the Top 100 Most Cited Chinese Papers Published in International Journals, highlighting his early influence in the field. His role as Principal Scientist in China's National Key R&D Program further cements his leadership in cutting-edge materials science.

Academic Cites and Honors

His prolific output has earned numerous prestigious honors:

  • 2023 Clarivate Highly Cited Researcher (Cross-Field)

  • 2015 National Program for Thousand Young Talents of China

  • 2020 & 2017 Jiangsu Province High-Level Talent Programs

  • 2011 Top 100 Most Cited Chinese Papers

  • Chinese Academy of Sciences & Institute of Physics Student Excellence Awards (2010)

These accolades reflect both the depth and breadth of his academic influence.

Technical Skills

Prof. Zhang is an expert in molecular beam epitaxy (MBE), mastering the growth of complex thin-film materials with atomic precision. His skill in angle-resolved photoemission spectroscopy (ARPES) enables him to probe electronic band structures and surface states with remarkable clarity. Additionally, his early work included scanning tunneling microscopy (STM) studies, demonstrating his versatility across multiple surface science techniques.

Teaching and Mentorship

As a professor at Nanjing University, Prof. Zhang is dedicated to nurturing the next generation of physicists. He combines rigorous training in experimental methods with a forward-thinking perspective on quantum materials, offering students and postdocs a rich, interdisciplinary research environment. Many of his mentees go on to pursue successful academic and research careers.

Legacy and Future Contributions

Prof. Yi Zhang stands at the intersection of innovation and impact. His research group continues to push the boundaries of quantum materials science, with a strong emphasis on emerging 2D magnetic and topological systems. As materials physics enters an era of quantum information and next-gen electronics, Prof. Zhang’s ongoing and future work promises to shape fundamental understanding and inspire transformative technologies.

Notable Publications

  • Title: Discovery of a Three-Dimensional Topological Dirac Semimetal, Na₃Bi
    Authors: Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, et al.
    Journal: Science
    Year: 2014


  • Title: Giant Bandgap Renormalization and Excitonic Effects in a Monolayer Transition Metal Dichalcogenide Semiconductor
    Authors: M.M. Ugeda, A.J. Bradley, S.F. Shi, H. Felipe, Y. Zhang, D.Y. Qiu, W. Ruan, et al.
    Journal: Nature Materials
    Year: 2014​

  • Title: Crossover of the Three-Dimensional Topological Insulator Bi₂Se₃ to the Two-Dimensional Limit
    Authors: Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, et al.
    Journal: Nature Physics
    Year: 2010


  • Title: Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe₂
    Authors: Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, et al.
    Journal: Nature Nanotechnology
    Year: 2014

  • Title: Topological Quantum Compiling with Reinforcement Learning
    Authors: Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang*, Dong-Ling Deng*
    Journal: Physical Review Letters
    Year: 2020​

 

Sun Chengwen | Thermochemistry | Best Researcher Award

Dr. Sun Chengwen | Thermochemistry | Best Researcher Award

Northeast Forestry University, China

👨‍🎓Profiles

📚 Early Academic Pursuits

Dr. Sun Chengwen embarked on his academic journey with a strong foundation in engineering. He completed his undergraduate studies at Harbin Engineering University from 2009 to 2013, focusing on power engineering and engineering thermophysics. Recognized for his outstanding academic performance, he was later awarded a government-sponsored opportunity to study abroad. His passion for energy research led him to pursue a Master-Doctor Combined Program at the Karlsruhe Institute of Technology, Germany (2021-2022), where he specialized in Thermal Energy Technology and Safety.

🏢 Professional Endeavors

Currently, Dr. Sun serves as an Associate Professor at the School of Mechanical and Electrical Engineering, Northeast Forestry University (since May 2023). His work primarily involves advanced combustion technologies, detonation wave propagation, and energy efficiency improvements in combustion chambers. His interdisciplinary experience, gained through both domestic and international collaborations, positions him as a key contributor to modern combustion research.

🔬 Contributions and Research Focus

Dr. Sun’s research is centered on Rotating Detonation Combustion Technology, an advanced approach to achieving higher propulsion efficiency and energy conversion rates. His doctoral project at Harbin Engineering University (2016-2023) focused on:
1️⃣ Explaining the formation of oblique shock waves and the behavior of detonation wave propagation in methane-air mixtures under single-point initiation.
2️⃣ Analyzing the supercharging performance of rotating detonation combustion chambers under various working conditions, contributing to improved energy output and efficiency.
3️⃣ Developing strategies to suppress pulsation and improve the uniformity of flow field distribution, enhancing combustion chamber stability and reducing emissions.

🌍 Impact and Influence

Dr. Sun’s research holds significant implications for aerospace propulsion, power generation, and sustainable combustion technology. His contributions aid in the development of low-emission, high-efficiency combustion systems, paving the way for next-generation propulsion technology. His work serves as a reference for industries seeking to optimize energy conversion and fuel utilization efficiency.

📖 Academic Citations and Recognition

Dr. Sun has been recognized for his scholarly contributions, with his doctoral research ranking in the Top 10% of his field. His findings on detonation wave behavior and combustion chamber optimization have been cited in various high-impact journals. His expertise is frequently sought after in combustion research circles, both in China and internationally.

🛠️ Technical Skills

Dr. Sun possesses expertise in:
✔ Rotating detonation wave analysis and simulation
✔ Computational Fluid Dynamics (CFD) for combustion modeling
✔ High-speed flow field visualization techniques
✔ Low-emission combustion chamber design
✔ Experimental validation of detonation combustion performance

🎓 Teaching Experience

As an Associate Professor, Dr. Sun actively mentors students in the fields of power engineering, thermophysics, and combustion technology. His teaching approach integrates theoretical knowledge with experimental applications, ensuring students gain hands-on experience in advanced energy systems.

🚀 Legacy and Future Contributions

Dr. Sun Chengwen is poised to make lasting contributions to clean energy and advanced propulsion systems. His research on low-emission detonation combustion technology aligns with global sustainability goals, making him a crucial figure in next-generation energy solutions. His future work will likely focus on expanding the application of rotating detonation technology in aerospace and power industries, further enhancing energy efficiency and environmental protection.

📖Notable Publications

  • Performance evaluation and outlet load improvement of a rotating detonation combustor with different outlet nozzles

    • Journal: International Journal of Hydrogen Energy
    • Year: 2021.04
  • Effects of diverging nozzle downstream on flow field parameters of rotating detonation combustor

    • Journal: Applied Science
    • Year: 2019.10
  • Effect of expansion outlet on continuous rotating detonation combustor

    • Conference: ICDER International Conference
    • Year: 2019.08
  • Effects of Airflow Velocity and Droplet Diameter on the Secondary Breakup Characteristics

    • Journal: AIAA Journal
    • Year: 2021.08
  • The formation and development of oblique detonation wave with different chemical reaction models

    • Journal: Aerospace Science and Technology
    • Year: 2021.07
  • A combined theory model for predicting the viscosity of water-based Newtonian nanofluids containing spherical oxide nanoparticles

    • Journal: Journal of Thermal Analysis and Calorimetry
    • Year: 2018.01