Dr. Xianli Song | Analytical Techniques | Best Researcher Award
Anhui polytechnic university, china
Profiles
Early Academic Pursuits
Xianli Song embarked on her academic journey in chemical sciences with a Bachelor of Engineering in Chemical Engineering and Technology from Taishan Medical College (2008–2012). Her enthusiasm for the field grew as she pursued her Master of Engineering in Chemistry at the University of Xinjiang (2013–2016), where she laid a solid foundation in materials and electrochemistry. Her pursuit of advanced scientific inquiry culminated in a Ph.D. in Applied Chemistry from the prestigious University of Chinese Academy of Sciences (2017–2021), Beijing, where she honed her research skills in solid-state electrolytes and lithium metal battery technologies.
Professional Endeavors & Research Focus
Dr. Song's research is primarily centered around electrochemical energy storage, particularly solid-state lithium metal batteries. She has significantly contributed to the development of composite gel polymer electrolytes, poly(ionic liquid)-based electrolytes, and hybrid solid-state systems. Her studies focus on enhancing ion transport mechanisms, improving interface compatibility, and ensuring thermal and electrochemical stability of next-generation battery materials. Her multidisciplinary approach integrates material synthesis, structural analysis, and performance evaluation—positioning her as an expert in applied electrochemistry.
Contributions and Publications
Dr. Song has authored and co-authored 10 peer-reviewed journal articles in high-impact publications such as Advanced Functional Materials, Electrochimica Acta, Solid State Ionics, and J. Mater. Chem. A. Her work has explored topics ranging from ionogel-in-ceramic hybrid electrolytes to freestanding carbon nanofiber composites for flexible supercapacitors. Notably, her 2021 paper on “synergistic coupling mechanism of Li⁺ transport” gained attention for its innovative hybrid solid electrolyte design.
Impact and Influence
Dr. Song’s research has contributed to advancing safe, high-performance lithium metal battery systems, addressing key issues in the development of solid-state energy storage. Her publications serve as references for ongoing work in electrolyte chemistry and battery materials, supporting sustainable energy goals globally. She was recognized with the 2020 Merit Student Award from the University of Chinese Academy of Sciences, acknowledging her academic excellence and research impact.
Academic Citations & Thought Leadership
Her scholarly contributions are widely cited by peers in the field of materials chemistry and battery technology, demonstrating the relevance and applicability of her findings. Through collaboration with seasoned scientists like Prof. Gongying Wang and Prof. Suojiang Zhang, she has become a valued voice in the energy storage research community.
Technical Skills & Expertise
Dr. Song exhibits a command over a wide array of laboratory instruments including tube furnaces, centrifuges, and autoclaves. She is adept at operating electrochemical workstations (Metrohm-Autolab, CHI 660E) and battery charge-discharge analyzers. Her material characterization proficiency spans XRD, SEM, TEM, and BET techniques. Additionally, she is skilled in scientific data analysis and visualization using software like Origin 8.0 and Jade 6.0, along with strong command of Microsoft Office tools.
Teaching Experience
Currently affiliated with the School of Chemical and Environmental Engineering at Anhui Polytechnic University, Dr. Song shares her knowledge with aspiring chemists. She emphasizes experimental techniques and electrochemical analysis in her lectures, helping shape the next generation of materials scientists.
Awards and Recognition
Dr. Song’s academic diligence and research excellence have earned her numerous accolades, including:
-
2020 Merit Student Award, UCAS
-
2016 Excellent Graduate Dissertation, Xinjiang University
-
2011 Outstanding Student, Taishan Medical College
Legacy and Future Ctionontribus
As an accomplished researcher and educator, Dr. Xianli Song continues to push the boundaries of materials chemistry. Her ongoing work in solid-state electrolytes and sustainable energy solutions is expected to play a vital role in the evolution of next-generation batteries. With a clear vision for innovation and a commitment to academic rigor, she aims to leave a lasting impact on the field of applied chemistry and clean energy technology.
Notable Publications
-
Title: Construction of core@shell nanofiber membrane with enhanced interface compatibility for lithium-metal battery
Author: Xianli Song
Journal: Solid State Ionics -
Title: Construction organic composite gel polymer electrolyte for stable solid-state lithium metal batteries
Author: Xianli Song
Journal: Solid State Ionics -
Title: Enhanced transport and favorable distribution of Li-ion in a poly(ionic liquid) based electrolyte facilitated by Li₁.₃Al₀.₃Ti₁.₇(PO₄)₃ nanoparticles for highly-safe lithium metal batteries
Author: Xianli Song
Journal: Electrochimica Acta -
Title: Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor
Author: Xianli Song
Journal: Electrochimica Acta -
Title: Unraveling the Synergistic Coupling Mechanism of Li⁺ Transport in an “Ionogel-in-Ceramic” Hybrid Solid Electrolyte for Rechargeable Lithium Metal Battery
Author: Xianli Song
Journal: Advanced Functional Materials