Rajendra Kumar Konidena | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Rajendra Kumar Konidena | Organic Chemistry | Best Researcher Award

Indian Institute of Technology-Patna, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Rajendra Kumar Konidena embarked on his academic journey with a strong foundation in the sciences, completing his secondary education and intermediate studies with notable scores in Andhra Pradesh, India. He earned his Bachelor of Science degree in Chemistry, Physics, and Mathematics from Acharya Nagarjuna University with an impressive 85% marks. Progressing further, he completed his Master of Science in Organic Chemistry at VIT University with a CGPA of 8.99/10. His academic rigor culminated in a Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Roorkee, where he specialized in “Multi-Substituted Carbazole-Based Functional Materials for Optoelectronic Applications” under the supervision of Dr. K. R. Justin Thomas.

💼 Professional Endeavors

Dr. Konidena has held several prestigious fellowships reflecting his sustained research excellence. He was awarded the Ramanujan Fellowship by SERB-India, the ERA postdoctoral fellowship by Marie-Curie Actions, and fellowships by the Japanese Society for the Promotion of Science (JSPS), National Research Foundation (NRF) of South Korea, and the National Postdoctoral Fellowship (NPDF) by SERB-DST India. He also undertook key research projects funded by national and international agencies, including leading a JSPS-funded project on MR-TADF emitters and collaborating on an NRF-funded project aimed at enhancing TADF device efficiency.

🔬 Contributions and Research Focus

Dr. Konidena’s research primarily focuses on the design and synthesis of organic π-conjugated materials with applications in cutting-edge optoelectronic devices such as organic light-emitting diodes (OLEDs), solar cells, molecular sensors, and biomedical devices. His expertise spans molecular design of heterocyclic compounds, photophysical characterizations, electrochemical analysis, and fabrication of organic thin films and devices. His work includes pioneering multi-substituted carbazole materials and developing stable, color-tuneable organic emitters for OLED technology.

🌟 Impact and Influence

His research has a wide-reaching impact on the advancement of organic electronics, contributing to innovative materials that improve device performance and stability. Through his funded projects and collaborations with both academic and industrial partners, Dr. Konidena has helped drive forward sustainable and efficient organic optoelectronic technologies. His achievements have been recognized globally through prestigious fellowships and awards.

📚 Academic Citations and Recognition

His research outputs have been well received in the scientific community, as reflected in numerous fellowships and awards for his doctoral and postdoctoral work. Notably, he secured the Seal of Excellence for his Marie-Curie fellowship proposal and consistently ranks highly in national examinations such as the CSIR-National Eligibility Test and GATE. His scholarly contributions demonstrate significant academic recognition and influence.

🛠️ Technical Skills

Dr. Konidena is proficient in a broad range of experimental techniques essential for organic electronics research. These include organic synthesis and purification, structural analysis via NMR, MALDI-TOF, ESI-MS, and FT-IR, electrochemical techniques like cyclic voltammetry, and detailed optical characterizations such as steady-state and time-resolved photoluminescence. He is skilled in physical property analyses including thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), thin film deposition methods including spin coating and high vacuum multilayer film growth, as well as device fabrication and characterization for OLEDs.

👩‍🏫 Teaching and Mentorship Experience

Throughout his doctoral and postdoctoral tenures, Dr. Konidena has been actively involved in mentoring students and junior researchers, guiding them in experimental design and execution within the domain of organic functional materials. His experience contributes not only to scientific advancements but also to the training and development of the next generation of researchers in organic electronics.

🌱 Legacy and Future Contributions

With a trajectory marked by sustained innovation and scholarly excellence, Dr. Konidena is poised to continue contributing to the field of organic optoelectronics. His future work is expected to focus on the development of novel, efficient organic materials and devices with applications in next-generation electronics and sustainable technologies. His ongoing collaborations with academic institutions and industry partners, including consultancy projects, highlight his commitment to translating research into practical applications.

📖Notable Publications

Leveraging quinoxaline functionalization for the design of efficient orange/red thermally activated delayed fluorescence emitters
Authors: Shantaram Kothavale, Rajendra Kumar Konidena, Hyunjung Lee, Jun Yeob Lee
Journal: Chemical Communications
Year: 2025

Recent advances in the molecular designs of near ultraviolet emitters for efficient organic light emitting diodes
Authors: P. Keerthika, Ankit Kumar, Arthanareeswari Maruthapillai, Venkatramaiah Nutalapati, Rajendra Kumar Konidena
Journal: Journal of Photochemistry and Photobiology C: Photochemistry Reviews
Year: 2025

Strategic molecular design of efficient solution- and vacuum-processable deep-red thermally activated delayed fluorescence emitters featuring remarkable color saturation
Authors: Shantaram Kothavale, Rajendra Kumar Konidena, Won Jae Chung, Unhyeok Jo, Songkun Zeng, Yafei Wang, Jun Yeob Lee
Journal: Chemical Engineering Journal
Year: 2024

Facile dimerization strategy for producing narrowband green multi-resonance delayed fluorescence emitters
Authors: Minlang Yang, Rajendra Kumar Konidena, So Shikita, Takuma Yasuda
Journal: Journal of Materials Chemistry C
Year: 2023

Marching Toward Long‐Wavelength Narrowband Emissive Multi‐Resonance Delayed Fluorescence Emitters for Organic Light Emitting Diodes
Authors: P. Keerthika, Rajendra Kumar Konidena
Journal: Advanced Optical Materials
Year: 2023

Neoteric Advances in Oxygen Bridged Triaryl Boron‐based Delayed Fluorescent Materials for Organic Light Emitting Diodes
Authors: Kenkera Rayappa Naveen, Rajendra Kumar Konidena, P. Keerthika
Journal: The Chemical Record
Year: 2023

Teng Liu | Organic Chemistry | Best Researcher Award

Prof. Teng Liu | Organic Chemistry | Best Researcher Award

Qujing Normal University, China

👨‍🎓Profiles

🎓 Academic Background and Early Career

Prof. Teng Liu has a strong foundation in chemistry, beginning with a Bachelor’s degree in Chemistry Education from Jiangxi Normal University (2006-2010). His academic journey continued at Yunnan University, where he obtained a Ph.D. in Organic Chemistry (2010-2016), specializing in asymmetric catalytic synthesis under the supervision of Prof. Zhihui Shao. His doctoral research focused on catalytic asymmetric isatin ketimines 1,2-addition reactions and nitrodienyne 1,4-addition reactions, contributing significantly to the field of stereoselective organic synthesis.

🔬 Professional Endeavors and Research Contributions

Prof. Teng Liu began his professional career as a Lecturer at Qujing Normal University (2017-2020) and was later promoted to Associate Professor in 2021. His research expertise lies in asymmetric catalytic synthesis and green chemistry, where he focuses on the development of efficient and sustainable synthetic methodologies for complex organic molecules. His work integrates chiral catalysis, selective cross-coupling reactions, and environmentally friendly organic transformations.

📑 Recent Research Achievements and Publications

In the last five years, Prof. Liu has published several high-impact SCI-indexed papers in renowned journals such as Organic Letters, Advanced Synthesis & Catalysis, and Green Chemistry. His notable publications include:

  • Base-Catalyzed Chalcogenative Annulation (Org. Lett., 2025): A novel approach for synthesizing 1,4-sulfa-/selena-zepanes using elemental sulfur/selenium.

  • Stepwise Synthesis of Pyrroloquinoline Diones (Adv. Synth. Catal., 2023): A one-pot method for constructing complex heterocyclic frameworks.

  • Cu(I)-Catalyzed Cascade Cyclization Reaction (Org. Lett., 2022): A groundbreaking method to construct pyrimido[5,4-b]indole derivatives, widely cited in the field.

  • Highly Selective C-P Cross-Coupling Reaction (Green Chem., 2019): A sustainable approach for the synthesis of ortho-amino triarylphosphine derivatives, advancing green chemistry methodologies.

His research has been highly cited and recognized in the field of organic chemistry, particularly in the areas of catalytic asymmetric synthesis and environmentally friendly chemical transformations.

🏆 Awards and Recognitions

Prof. Liu’s academic excellence has been acknowledged through several prestigious awards, including:

  • 2020: Excellent Doctoral Dissertation in Yunnan Province – Recognizing the significance of his Ph.D. research in asymmetric catalysis.

  • 2024: The Revitalize Yunnan Talent Support Program – Young Talents – A competitive award aimed at fostering outstanding young researchers in Yunnan Province.

🛠️ Research Focus and Impact

His current research interests center on asymmetric catalytic synthesis and green chemistry, aiming to develop highly efficient, selective, and eco-friendly synthetic methods. His work significantly impacts pharmaceutical synthesis, material science, and sustainable organic transformations. By integrating chiral catalysts and novel reaction mechanisms, he contributes to advancing both fundamental organic chemistry and practical applications in industrial synthesis.

🌱 Future Contributions and Academic Legacy

Looking ahead, Prof. Liu is committed to pushing the boundaries of green chemistry and asymmetric catalysis by exploring new catalytic systems, reaction pathways, and environmentally sustainable synthetic methodologies. His contributions to chemical education, research innovation, and sustainable chemical synthesis will continue to shape the next generation of scientists and drive progress in the field of organic chemistry.

📖Notable Publications

Base-Catalyzed Chalcogenative Annulation of N-Maleimido O-Aminobenzyl Alcohol with Elemental Sulfur/Selenium: Access to 1,4-Sulfa-/Selena-zepanes

Authors: Y. Wen, Yuanmin; T. Liu, Teng; S. Huang, Shuntao; Y. Ye, Yanqing; C. Huang, Chao

Journal: Organic Letters

Year: 2025

Brønsted-Acid Catalyzed Aldehyde Insertion to Construct C−X Bond: High Regio- and Chemoselectivity Synthesis of Dihydrobenzo[1,5]oxazocines and Pyrrolo[3,4-d]tetrahydropyrimidines

Authors: Y. Wen, Yuanmin; T. Liu, Teng; G. Zeng, Guiyun; C. He, Chixian; C. Huang, Chao

Journal: European Journal of Organic Chemistry

Year: 2025

Cs₂CO₃-Catalyzed Multi-Component One-Pot Stepwise Route for the Synthesis of Polysubstituted 2-Pyridones

Authors: S. Liu, Shitao; C. He, Chixian; G. Li, Guijun; X. Shen, Xianfu; T. Liu, Teng

Journal: ChemistrySelect

Year: 2024

Recent Advances in Total Synthesis of Prenylated Indole Alkaloids by Transition Metal-Catalyzed Reactions as the Key Step

Authors: T. Peng, Tianfeng; Y. Zhao, Yuxiang; S. Pu, Shaojian; Y. Miao, Yingchun; X. Shen, Xianfu

Journal: [No source information available]

Year: Not specified

Chemodivergence in Fluorine Source-Controlled Cascade Reaction of Aryne Precursors to Synthesize Pyrrolo[3,4-b]indoles and 3-Arylated Maleimides

Authors: Z. Wang, Zhuoyu; S. Huang, Shuntao; L. Yin, Lu; T. Liu, Teng; C. Huang, Chao

Journal: Journal of Organic Chemistry

Year: 2024