Muhammad Kashif Majeed | Materials Chemistry | Best Researcher Award

Dr. Muhammad Kashif Majeed | Materials Chemistry | Best Researcher Award

National University of Science and Technology, Pakistan

👨‍🎓Profiles

📚 Early Academic Pursuits

Dr. Muhammad Kashif Majeed’s academic journey reflects a strong foundation in chemistry, especially materials science and electrochemistry. His studies began with a Bachelor's degree in Chemistry from Gomal University, Pakistan, followed by a Master’s in the same field. His educational path continued with a Ph.D. in Chemistry (Materials/Inorganic) from Shandong University, China, where he focused on the synthesis and electrochemical performances of Si/C-based anode materials for lithium-ion batteries. His thesis, guided by Professors Yang Jian and Xiaojian Ma, provided significant contributions to the development of energy storage solutions.

🧑‍🔬 Professional Endeavors

Since 2023, Dr. Majeed has been balancing multiple prestigious roles. He is an Assistant Professor in the Department of Chemistry at the National University of Science and Technology, Islamabad, Pakistan. He also holds a Senior Researcher position in Mechanical Engineering at the University of Texas at Dallas, Richardson, Texas, U.S. His career trajectory includes prestigious postdoctoral experiences at globally recognized institutions, including the University of Texas at Arlington and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. These roles have enabled him to strengthen his expertise in materials science, catalysis, and energy storage technologies.

🔬 Contributions and Research Focus

Dr. Majeed’s research interests primarily lie in materials chemistry, particularly focusing on lithium-ion battery development, nanomaterials, and electrochemical systems. His work on controllable synthesis techniques for Si/C-based anode materials has had a profound impact on the field of energy storage. Additionally, he has conducted advanced research in materials synthesis, crystal analysis, and electrochemical analysis techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests. His research has contributed significantly to the development of efficient, sustainable materials for energy storage systems, thus advancing clean energy technologies.

🌍 Impact and Influence

Dr. Majeed’s research has been pivotal in enhancing our understanding of electrochemical energy storage materials, especially those that involve novel materials like Si/C anodes. His work has been recognized in several top-tier journals such as ACS Applied Materials Interfaces, ACS Omega, Materials, and Sustainable Energy and Fuels. As an editorial board member and reviewer for prestigious journals, he plays an integral role in shaping future scientific discourse and advancing the materials science community. His collaborations across continents further amplify his global impact in the field.

📑 Academic Cites and Publications

Dr. Majeed’s publications in leading scientific journals have garnered significant attention in the materials science and electrochemistry communities. His research is frequently cited, highlighting its importance in advancing battery technology and energy storage solutions. As an active journal reviewer for high-impact publications such as ACS Applied Materials Interfaces and Chemistry-A European Journal, he not only contributes to scientific literature but also ensures the high quality and rigor of published research in his field.

🛠️ Technical Skills

Dr. Majeed possesses a diverse skill set, including proficiency in advanced materials characterization techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). His expertise extends to the use of computational tools for density functional theory (DFT), material modeling (ChemCraft, Gauss view), and nano-materials synthesis via various methods like sol-gel, hydrothermal, and solvothermal. He is highly proficient in electrochemical analysis methods, making him a versatile researcher capable of addressing complex material challenges.

👨‍🏫 Teaching Experience and Mentorship

As an Assistant Professor at the National University of Science and Technology, Dr. Majeed is involved in teaching advanced chemistry courses, where he imparts knowledge in materials science and electrochemistry. His teaching approach integrates his deep research experience, offering students a comprehensive understanding of both theory and practical applications in chemistry and materials science. Dr. Majeed’s mentorship extends beyond the classroom, as he actively guides research projects, helping students navigate complex scientific problems and develop critical skills for their future careers.

🏆 Legacy and Future Contributions

Dr. Majeed’s future contributions to the fields of energy storage and materials science are poised to have a lasting impact. His work in developing high-performance, sustainable materials for energy applications will continue to drive innovation in battery technologies. Moreover, his collaborative research efforts at global institutions suggest that he will remain at the forefront of scientific advancements, mentoring the next generation of researchers and contributing to a sustainable energy future. As he continues his academic career, Dr. Majeed is likely to leave a significant legacy in both research and education, inspiring future advancements in materials science and engineering.

📖Notable Publications

Interfacial Engineering of Polymer Solid‐State Lithium Battery Electrolytes and Li‐Metal Anode: Current Status and Future Directions

Authors: Muhammad Kashif Majeed, Arshad Hussain, Ghulam Hussain, Muhammad Umar Majeed, Muhammad Zeeshan Ashfaq, Rashid Iqbal, Adil Saleem

Journal: Small

Year: 2024-12

Designing Nanocomposite-Based Electrochemical Biosensors for Diabetes Mellitus Detection: A Review

Authors: Xiang Guo, Jiaxin Wang, Jinyan Bu, Huichao Zhang, Muhammad Arshad, Ayesha Kanwal, Muhammad K. Majeed, Wu-Xing Chen, Kuldeep K Saxena, Xinghui Liu

Journal: ACS Omega

Year: 2024-07-16

Ni-rich cathode evolution: exploring electrochemical dynamics and strategic modifications to combat degradation

Authors: Adil Saleem, Leon L. Shaw, Rashid Iqbal, Arshad Hussain, Abdul Rehman Akbar, Bushra Jabar, Sajid Rauf, Muhammad Kashif Majeed

Journal: Energy Storage Materials

Year: 2024-05

Co3(hexaamino dipyrazinoquinoxaline)2: Highly conductive and robust two-dimensional Aza-based cobalt metal-organic framework as an efficient electrocatalyst for acidic oxygen evolution

Authors: Rashid Iqbal, M. Shahzaib Naeem, Muhammad Ahmad, Arshad Hussain, Abdul Rehman Akbar, Maryam Kiani, M. Zeeshan Ashfaq, Sajid Rauf, Kareem Yusuf, Muhammad K. Majeed et al.

Journal: Journal of Power Sources

Year: 2024-02

Boosting the crystallinity of novel two-dimensional hexamine dipyrazino quinoxaline-based covalent organic frameworks for electrical double-layer supercapacitors

Authors: Rashid Iqbal, Muhammad Kashif Majeed, Arshad Hussain, Aziz Ahmad, Muhammad Ahmad, Bushra Jabar, Abdul Rehman Akbar, Sajjad Ali, Sajid Rauf, Adil Saleem

Journal: Materials Chemistry Frontiers

Year: 2023

Simulation Analysis of Novel Integrated LNG Regasification-Organic Rankine Cycle and Anti-Sublimation Process to Generate Clean Energy

Authors: Suri, S.U.K.; Majeed, M.K.; Ahmad, M.S.

Journal: Energies

Year: 2023

 

 

Donghyuk Kim | Materials Chemistry | Best Researcher Award

Dr. Donghyuk Kim | Materials Chemistry | Best Researcher Award

Korea Institute of Industrial Technology, South Korea

👨‍🎓Profiles

📈 Early Academic Pursuits

He began his academic journey with a strong foundation in Materials Engineering. He completed his Master's degree at Sungkyunkwan University (2002-2004) under the supervision of Professor Young-Jik Kim, where he specialized in New Materials Engineering. His passion for metallurgical advancements led him to pursue a Ph.D. at Kyungpook National University (2013-2018). Under the guidance of Professor Byeong-Jun Ye, his doctoral research culminated in the thesis titled "Study on the Austenite Formation and Oxidation Resistance of AGI (Austempered Gray Cast Iron) According to Aluminum Content". This foundational research paved the way for his expertise in cast iron materials and oxidation resistance, laying a solid groundwork for his professional journey.

💼 Professional Endeavors

He currently holds the position of Senior Researcher in the Mobility Components Group at the Korea Institute of Industrial Technology (KITECH). With a strong background in materials science, he actively contributes to innovative research and development projects focusing on mobility technologies and industrial applications. His role involves leading projects, fostering collaboration, and advancing key components that enhance industrial mobility solutions. Located in Daegu, Republic of Korea, He plays a pivotal role in strengthening Korea's technological edge in manufacturing and materials research.

🔬 Research Focus and Contributions

His research focuses on the microstructure evolution, austenite formation, and oxidation resistance of advanced cast iron materials. His doctoral work on Austempered Gray Cast Iron (AGI) highlighted the critical role of aluminum content in improving material properties, including high-temperature oxidation resistance and enhanced mechanical performance. His contributions extend to: Investigating advanced metallurgical processes, Improving the durability and strength of mobility components, Developing materials with enhanced resistance to environmental factors, His work has broad applications in automotive, aerospace, and industrial manufacturing, addressing challenges in material sustainability and performance optimization.

🔍 Impact and Influence

Through his pioneering research, He has significantly contributed to advancements in metallurgical engineering. His insights into cast iron's microstructure behavior have influenced the development of next-generation materials for industrial applications. As a Senior Researcher at KITECH, he actively mentors junior researchers and collaborates with industry leaders, fostering an environment of innovation. His research not only impacts academic circles but also drives industrial practices, particularly in the mobility and manufacturing sectors.

📅 Academic Citations

His scholarly works are well-recognized in the field of materials engineering. His research findings have been cited in multiple peer-reviewed journals, demonstrating the academic value and practical relevance of his studies. Notably, his contributions to Austempered Gray Cast Iron research remain a reference point for researchers focusing on oxidation resistance and microstructure formation.

🛠️ Technical Skills

He is highly proficient in various technical domains, including: Metallurgical Analysis: Austenite and ferrite formation studies, Materials Characterization: XRD, SEM, TEM, and mechanical testing techniques, Oxidation Resistance Testing: Evaluating material stability at high temperatures, Industrial Application Development: R&D for mobility components and advanced alloys, His technical expertise bridges the gap between theoretical research and practical applications, enabling the development of robust materials.

💼 Teaching and Mentorship

Throughout his academic and professional career, He has been dedicated to mentoring students and junior researchers. His ability to explain complex metallurgical phenomena in practical terms has earned him respect as an effective mentor. By guiding research projects and fostering innovation, he has inspired the next generation of materials scientists to explore sustainable and high-performance materials.

✨ Legacy and Future Contributions

His legacy lies in his impactful research on cast iron materials and their applications in industrial mobility. Moving forward, he remains committed to: Developing eco-friendly and sustainable materials for industrial applications. Enhancing the performance of mobility components through advanced metallurgical processes. Contributing to global collaborations that drive innovation in materials science. As a Senior Researcher, he continues to bridge academic research with industrial advancements, ensuring that his work shapes the future of material engineering and mobility technologies.

📏 Conclusion

His career reflects a seamless blend of academic excellence and professional expertise. From his early academic pursuits to his current role as a Senior Researcher at KITECH, he has consistently contributed to the field of metallurgical engineering. His research, technical skills, and mentorship have left an enduring mark on both academia and industry, positioning him as a leader in advanced materials development and innovation.

📖Notable Publications