Rajendra Kumar Konidena | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Rajendra Kumar Konidena | Organic Chemistry | Best Researcher Award

Indian Institute of Technology-Patna, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Rajendra Kumar Konidena embarked on his academic journey with a strong foundation in the sciences, completing his secondary education and intermediate studies with notable scores in Andhra Pradesh, India. He earned his Bachelor of Science degree in Chemistry, Physics, and Mathematics from Acharya Nagarjuna University with an impressive 85% marks. Progressing further, he completed his Master of Science in Organic Chemistry at VIT University with a CGPA of 8.99/10. His academic rigor culminated in a Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Roorkee, where he specialized in “Multi-Substituted Carbazole-Based Functional Materials for Optoelectronic Applications” under the supervision of Dr. K. R. Justin Thomas.

💼 Professional Endeavors

Dr. Konidena has held several prestigious fellowships reflecting his sustained research excellence. He was awarded the Ramanujan Fellowship by SERB-India, the ERA postdoctoral fellowship by Marie-Curie Actions, and fellowships by the Japanese Society for the Promotion of Science (JSPS), National Research Foundation (NRF) of South Korea, and the National Postdoctoral Fellowship (NPDF) by SERB-DST India. He also undertook key research projects funded by national and international agencies, including leading a JSPS-funded project on MR-TADF emitters and collaborating on an NRF-funded project aimed at enhancing TADF device efficiency.

🔬 Contributions and Research Focus

Dr. Konidena’s research primarily focuses on the design and synthesis of organic π-conjugated materials with applications in cutting-edge optoelectronic devices such as organic light-emitting diodes (OLEDs), solar cells, molecular sensors, and biomedical devices. His expertise spans molecular design of heterocyclic compounds, photophysical characterizations, electrochemical analysis, and fabrication of organic thin films and devices. His work includes pioneering multi-substituted carbazole materials and developing stable, color-tuneable organic emitters for OLED technology.

🌟 Impact and Influence

His research has a wide-reaching impact on the advancement of organic electronics, contributing to innovative materials that improve device performance and stability. Through his funded projects and collaborations with both academic and industrial partners, Dr. Konidena has helped drive forward sustainable and efficient organic optoelectronic technologies. His achievements have been recognized globally through prestigious fellowships and awards.

📚 Academic Citations and Recognition

His research outputs have been well received in the scientific community, as reflected in numerous fellowships and awards for his doctoral and postdoctoral work. Notably, he secured the Seal of Excellence for his Marie-Curie fellowship proposal and consistently ranks highly in national examinations such as the CSIR-National Eligibility Test and GATE. His scholarly contributions demonstrate significant academic recognition and influence.

🛠️ Technical Skills

Dr. Konidena is proficient in a broad range of experimental techniques essential for organic electronics research. These include organic synthesis and purification, structural analysis via NMR, MALDI-TOF, ESI-MS, and FT-IR, electrochemical techniques like cyclic voltammetry, and detailed optical characterizations such as steady-state and time-resolved photoluminescence. He is skilled in physical property analyses including thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), thin film deposition methods including spin coating and high vacuum multilayer film growth, as well as device fabrication and characterization for OLEDs.

👩‍🏫 Teaching and Mentorship Experience

Throughout his doctoral and postdoctoral tenures, Dr. Konidena has been actively involved in mentoring students and junior researchers, guiding them in experimental design and execution within the domain of organic functional materials. His experience contributes not only to scientific advancements but also to the training and development of the next generation of researchers in organic electronics.

🌱 Legacy and Future Contributions

With a trajectory marked by sustained innovation and scholarly excellence, Dr. Konidena is poised to continue contributing to the field of organic optoelectronics. His future work is expected to focus on the development of novel, efficient organic materials and devices with applications in next-generation electronics and sustainable technologies. His ongoing collaborations with academic institutions and industry partners, including consultancy projects, highlight his commitment to translating research into practical applications.

📖Notable Publications

Leveraging quinoxaline functionalization for the design of efficient orange/red thermally activated delayed fluorescence emitters
Authors: Shantaram Kothavale, Rajendra Kumar Konidena, Hyunjung Lee, Jun Yeob Lee
Journal: Chemical Communications
Year: 2025

Recent advances in the molecular designs of near ultraviolet emitters for efficient organic light emitting diodes
Authors: P. Keerthika, Ankit Kumar, Arthanareeswari Maruthapillai, Venkatramaiah Nutalapati, Rajendra Kumar Konidena
Journal: Journal of Photochemistry and Photobiology C: Photochemistry Reviews
Year: 2025

Strategic molecular design of efficient solution- and vacuum-processable deep-red thermally activated delayed fluorescence emitters featuring remarkable color saturation
Authors: Shantaram Kothavale, Rajendra Kumar Konidena, Won Jae Chung, Unhyeok Jo, Songkun Zeng, Yafei Wang, Jun Yeob Lee
Journal: Chemical Engineering Journal
Year: 2024

Facile dimerization strategy for producing narrowband green multi-resonance delayed fluorescence emitters
Authors: Minlang Yang, Rajendra Kumar Konidena, So Shikita, Takuma Yasuda
Journal: Journal of Materials Chemistry C
Year: 2023

Marching Toward Long‐Wavelength Narrowband Emissive Multi‐Resonance Delayed Fluorescence Emitters for Organic Light Emitting Diodes
Authors: P. Keerthika, Rajendra Kumar Konidena
Journal: Advanced Optical Materials
Year: 2023

Neoteric Advances in Oxygen Bridged Triaryl Boron‐based Delayed Fluorescent Materials for Organic Light Emitting Diodes
Authors: Kenkera Rayappa Naveen, Rajendra Kumar Konidena, P. Keerthika
Journal: The Chemical Record
Year: 2023

Yang Liu | Organic Chemistry | Best Researcher Award

Dr. Yang Liu | Organic Chemistry | Best Researcher Award

Shaanxi University of Technology, China

👨‍🎓Profiles

🎓 Education Background

Dr. Yang Liu pursued his academic journey in the field of chemistry, specializing in organic synthesis and materials chemistry. He earned his Ph.D. in Organic Chemistry from Wuhan University (2007-2010), one of China’s top institutions known for its excellence in scientific research. Prior to that, he completed his M.S. in Pesticide Science at Huazhong Normal University (2004-2007), where he developed expertise in chemical applications for agriculture and materials science. His strong educational foundation has equipped him with the skills to advance research in organic synthesis and material chemistry.

🏛️ Professional Experience

Dr. Liu has been an integral part of the Shaanxi University of Technology since 2011, where he has contributed extensively to research and education in organic and materials chemistry. His tenure at the university has been marked by innovative research, mentorship of students, and collaborations in interdisciplinary scientific projects. His work focuses on the development of new organic compounds and material applications, helping to bridge the gap between fundamental chemistry and industrial applications.

🔬 Research Interests and Contributions

Dr. Liu’s research primarily revolves around organic synthesis and materials chemistry, two fundamental areas that drive advancements in pharmaceuticals, polymers, and functional materials. His expertise in organic chemistry enables him to design and synthesize novel compounds, while his focus on materials chemistry allows him to explore their potential applications in nanotechnology, coatings, and sustainable materials. His contributions have significant implications for industrial development, environmental sustainability, and advanced material engineering.

📚 Academic Impact and Influence

Dr. Liu’s research has contributed to the advancement of chemical synthesis techniques and material applications, influencing both academic research and industry practices. His work is instrumental in addressing challenges in organic material development, pesticide formulation, and new material innovations. As a researcher and educator, he has played a vital role in training the next generation of chemists and materials scientists at Shaanxi University of Technology.

🛠️ Technical Expertise

With a strong background in organic chemistry, Dr. Liu possesses expertise in synthetic methodologies, reaction mechanisms, and material characterization techniques. His work involves advanced chemical analysis, spectroscopic methods (NMR, IR, UV-Vis), chromatography techniques (HPLC, GC-MS), and material testing. His interdisciplinary approach integrates chemical engineering and materials science, making significant contributions to applied chemistry research.

🎓 Teaching and Mentorship

As a professor at Shaanxi University of Technology, Dr. Liu has been dedicated to mentoring students, guiding research projects, and promoting scientific innovation. His teaching focuses on organic chemistry, reaction mechanisms, and materials chemistry, ensuring that students develop both theoretical knowledge and practical skills. His mentorship has helped students engage in cutting-edge research and contribute to the field of applied chemistry.

🌍 Future Contributions and Legacy

Dr. Yang Liu’s work continues to shape the future of organic synthesis and materials science, contributing to sustainable chemical development, novel material applications, and advancements in industrial chemistry. As global industries focus more on green chemistry and innovative material design, his expertise will play a crucial role in developing environmentally friendly and high-performance materials. His contributions to academic research, student mentorship, and interdisciplinary scientific collaboration ensure a lasting impact on the field of chemistry.

📖Notable Publications

The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative
Authors: Shuaihua Liu, Tian Yao, Donghui Xia, Quan Liu, Guanghui Tian, Yang Liu
Journal: Molecules
Year: 2025

The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative
Authors: Yang Liu
Journal: Molecules
Year: 2025

Synthesis of a Cholesterol Derivative and Its Application in Gel Emulsion Preparation
Authors: Yang Liu, Shuaihua Liu, Qiang Zhang, Guanghui Tian
Journal: Molecules
Year: 2024

Progress in Preparation and Application of Gel-Emulsions
Authors: Yang Liu, Shuaihua Liu, Junhong Wang, Qiang Zhang, Guanghui Tian
Journal: Journal of Materials Science and Chemical Engineering
Year: 2024

The mini-review for synthesis of core@Ag nanocomposite
Authors: Rui Wu, Fagen Zhang, Xiaohui Ji, Yang Liu, Xiaohua Guo, Gunghui Tian, Bo Liu
Journal: Arabian Journal of Chemistry
Year: 2022