Zeynep Pehlivan Köksal | Organic Chemistry | Best Researcher Award

Dr. Zeynep Pehlivan Köksal | Organic Chemistry | Best Researcher Award

Recep Tayyip Erdogan University | Turkey

Zeynep Pehlivan Köksal is a dedicated nurse‐scholar currently serving as a Research Assistant (PhD) in the Department of Nursing at Recep Tayyip Erdoğan University’s Faculty of Health Sciences. A native of Trabzon, Turkey, she earned her undergraduate degree from Karadeniz Technical University’s Faculty of Health Sciences, graduating. Soon after, she embarked on her clinical journey working as a staff nurse at Private Imperial Hospital in Trabzon and then at Trabzon Kanuni Training and Research Hospital. In 2020, she transitioned into academia, joining Recep Tayyip Erdoğan University as a research assistant, a role she has since built on with doctoral responsibilities beginning. Dr. Pehlivan Köksal has a strong and growing scholarly profile. Her international publications include research on symptoms in cancer patients such as constipation and taste changes and their impact on quality of life, published in Supportive Care in Cancer, as well as qualitative work on nursing students’ experiences in intensive care settings. On the national front, she has authored multiple articles addressing topics such as social support, stress, sleep quality, patient comfort, symptom management, and nursing education. Her work bridges clinical practice and research, often taking the symptom burden of patients undergoing chemotherapy or hemodialysis as her focal point. Beyond journal articles, she has an extensive record of conference presentations, contributing to discourse in oncology nursing, integrative therapies, and evidence-based nursing practices across Turkey. Throughout her career, Zeynep has demonstrated both clinical empathy and scientific rigor, positioning her as a promising researcher committed to improving patient outcomes and advancing nursing science.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

  • Akbal Demirci, Y., Aşik Özdemir, V., Pehlivan Köksal, Z., Genç Köse, B., & Pekmezci, H. (2025). Experiences and perceptions of Turkish nursing students during their first clinical placement in intensive care units: A qualitative study. Nursing in Critical Care.

  • Pehlivan Köksal, Z., Nural, N., & Kesen, O. (2025). The effect of oral cryotherapy on taste alteration, appetite level, risk of malnutrition and quality of life in patients undergoing chemotherapy: A randomized controlled trial. European Journal of Oncology Nursing.

  • Pehlivan Köksal, Z., & Nural, N. (2025). The effect of taste alteration on malnutrition and quality of life in patients undergoing chemotherapy. Supportive Care in Cancer.

  • Pehlivan Köksal, Z., & Nural, N. (2024, December 1). Ayaktan kemoterapi alan hastaların yaşam kalitesi ve etkileyen faktörler: Tanımlayıcı ve kesitsel çalışma [Quality of life and affecting factors in outpatients receiving chemotherapy: Descriptive and cross‑sectional study]. Ordu Üniversitesi Hemşirelik Çalışmaları Dergisi.

  • Pehlivan Köksal, Z., & Aşik Özdemir, V. (2024, April 29). Hopelessness in patients receiving hemodialysis treatment in the COVID‑19 pandemic: A descriptive and cross‑sectional study. Samsun Sağlık Bilimleri Dergisi.

Abolfazl Olyaei | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Abolfazl Olyaei | Organic Chemistry | Best Researcher Award

Imam Khomeini International University | Iran

Dr. Abolfazl Olyaei is an associate professor at Imam Khomeini International University, Qazvin. He earned his B.Sc. in Pure Chemistry from Tabriz University and completed his M.Sc. in Organic Chemistry at Tehran University under Professor Mohammad Raouf Darvich. He continued his studies at Tehran University, receiving a Ph.D. in Organic Chemistry, supervised by Professor Mehdi Ghandi. Dr. Olyaei’s research focuses on organic synthesis, particularly the synthesis of heterocyclic compounds, multicomponent reactions, green chemistry, catalysis, organocatalysis, and the application of materials and organomaterials across various scientific fields. Over the years, he has contributed extensively to scientific literature, authoring numerous research and review articles in reputable journals, highlighting his expertise and impact in organic and heterocyclic chemistry. He has authored 89 research documents with 908 citations recorded by Scopus and an h-index of 17, while Google Scholar reports over 1091 citations and an h-index of 19. His work integrates modern synthetic methods with environmentally friendly approaches, contributing to advancements in catalysis and material science. Dr. Olyaei’s academic dedication and prolific publication record make him a prominent figure in the field of organic chemistry in Iran and internationally.

Profiles : Scopus | Orcid | Google scholar 

Featured Publications

Sajjadi, S. B., Olyaei, A., & Shalbafan, M. (2025). Novel naphtho[2,3-b]furan-2,4,9(3H)-trione derivatives as potent ERα inhibitors: Design, regioselective synthesis, HMBC-NMR characterization, in silico molecular docking and ADME studies. BMC Chemistry, 19(1), 253.

Shalbafan, M., Sadeghpour, M., & Olyaei, A. (2025). Study on the interaction of Olmesartan with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Chemical Review and Letters, 8(3), 509–516.

Olyaei, A., Zanjanchi, F., Farzogi, M., & Sadeghpour, M. (2025). Comparative study of electronic structure and photophysical properties of some new Lawsone dyes in dye-sensitized solar cells by DFT and TD-DFT. Russian Journal of Physical Chemistry B, 19(2), 336–347.

Olyaei, A., Sadeghpour, M., & Sajjadi, S. B. (2025). A review on synthesis of furonaphthoquinones through Lawsone derivatives annulation reactions and their biological properties. RSC Advances, 15(5), 3515–3546.

Kayyal, M., Olyaei, A., Pourshamsian, K., & Sadeghpour, M. (2025). Molecular docking and prediction of ADME/drug-likeness properties of some benzochromenopyrimidine derivatives as inhibitors of cyclooxygenase 2 (COX-2). Chemical Review and Letters, 8(2), 300–308.

Zheng Xueping | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Zheng Xueping | Inorganic Chemistry | Best Researcher Award

Chang’an University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Assoc. Prof. Zheng Xueping of Chang’an University has cultivated a robust academic foundation grounded in applied material science and energy technology, with a core focus on hydrogen production and storage. Her early academic pursuits positioned her strongly within China’s rapidly growing hydrogen energy landscape, enabling her to take on significant national projects early in her career.

🏛️ Professional Endeavors

Currently serving as an Associate Professor, Dr. Zheng has played vital roles in both academic research and national-level scientific initiatives. She has presided over and contributed to over 50 major projects, including prestigious programs such as 863, 973, and key R&D initiatives from the Ministry of Science and Technology, as well as projects under the National Natural Science Foundation of China. She has independently led two provincial-level projects and one at the city level in Xi’an, showcasing her leadership and influence across various administrative and academic spheres.

🔬 Research Focus and Contributions

Her research is sharply focused on hydrogen production technologies via hydrolysis and advanced hydrogen storage systems. She has made substantial contributions to the development of solid-state hydrogen storage alloys and storage tanks, with applications in grid connectivity, energy buffering, and power generation. Notably, her work in low-temperature hydrogen storage alloys, initiated as early as 2007, has already seen industrial implementation. She has further contributed to innovative hydrogen production methods through hydrolysis of sodium borohydride and nano-aluminum, and independently designed hydrolysis-based hydrogen generation devices—leading to numerous patents.

🧪 Applications and Innovation Highlights

Dr. Zheng’s applied innovations extend beyond theoretical research. She developed high-end white glaze for Hong Kong in collaboration with Tangshan No.5 Ceramics Factory, designed sol-gel farad membrane machines for university use, and engineered a novel composite cement mortar admixture that resolved critical technical challenges during the construction of Xi’an Metro Line 3. These contributions exemplify her capability to transition research into practical, industrial-scale solutions.

🏅 Awards and Recognitions

Her innovative work has earned her multiple honors. These include a First Prize and a Third Prize at the provincial/ministerial level, the Merit Award at the 2023 “Maker China” High-End Manufacturing Competition, a Second Prize at the 2024 Xi’an Women’s Innovation and Entrepreneurship Competition, and recognition under the Xi’an Scientist + Engineer Project in 2025. These awards reflect not only her academic excellence but also her role in advancing technology-driven entrepreneurship.

📚 Academic Citations and Publications

With over 60 published articles—more than 20 of which are SCI-indexed—Dr. Zheng’s research has significantly shaped the academic discourse around hydrogen energy. She has secured nine invention patents and six utility model patents, with several more under evaluation. Her publication portfolio includes key works on rare earth, titanium-based, and magnesium-based hydrogen storage alloys, and hydrolysis-based hydrogen generation methods. These contributions have advanced both fundamental science and technological implementation.

🔍 Editorial Roles and Peer Recognition

She serves as an external reviewer for high-impact journals including International Journal of Hydrogen Energy, Journal of Power Sources, and Journal of Alloys and Compounds, evidencing the recognition of her expertise by the global scientific community. Moreover, she has been repeatedly invited to participate in the selection process of the internationally prestigious “Eni Award” by the Fondazione Eni Enrico Mattei in Italy.

🧑‍🔬 Professional Memberships and Advisory Roles

Dr. Zheng is actively involved in scientific governance and policy advisory roles. She serves as a review expert for multiple provincial Science and Technology Departments across China, including Shaanxi, Jiangxi, Shanxi, Xizang, Qinghai, Yunnan, and Heilongjiang. She is a member of the Powder Metallurgy Branch of the Chinese Society for Metals, part of the Expert Committee on Energy Materials and Devices in the National Materials Think Tank, and an expert in the National Postgraduate Education Evaluation system.

👩‍🏫 Teaching and Mentorship

As an academic mentor and educator, Dr. Zheng contributes to the training of future scientists and engineers in the field of hydrogen materials and clean energy technology. She supports young researchers through active guidance and provides access to real-world project experience via her numerous research initiatives.

🌟 Legacy and Future Contributions

Assoc. Prof. Zheng Xueping’s legacy is deeply embedded in the practical and scalable development of hydrogen storage and production technologies. Her work bridges the gap between high-level material science and societal energy needs. Moving forward, her research is expected to make a lasting impact on China’s national hydrogen strategy, the clean energy transition, and global collaborative innovation. With a remarkable record of academic achievement, applied invention, and policy-level engagement, she is poised to remain at the forefront of hydrogen energy research and technological advancement.

📖Notable Publications

Effect of loaded Co–B on hydrogen release performance of sodium borohydride
Journal: Journal of Physics and Chemistry of Solids
Year: 2025

Effect of Co–B on the hydrogen storage properties of LiAlH₄
Journal: Chemical Physics Letters
Year: 2025

Study on capacity of HPSB hydrogen storage material catalyzed by Sm₂O₃
Journal: International Journal of Hydrogen Energy
Year: 2024

Hydrogen generation by hydrolysis of alkaline NaBH₄ solution doped with amorphous catalyst Co–Y₂O₃–B/CNTs
Journal: International Journal of Hydrogen Energy
Year: 2024

A novel hydrogen storage material: The hydrolysis products of sodium borohydride
Journal: Journal of Physics and Chemistry of Solids
Year: 2024

Yang Liu | Organic Chemistry | Best Researcher Award

Dr. Yang Liu | Organic Chemistry | Best Researcher Award

Shaanxi University of Technology, China

👨‍🎓Profiles

🎓 Education Background

Dr. Yang Liu pursued his academic journey in the field of chemistry, specializing in organic synthesis and materials chemistry. He earned his Ph.D. in Organic Chemistry from Wuhan University (2007-2010), one of China’s top institutions known for its excellence in scientific research. Prior to that, he completed his M.S. in Pesticide Science at Huazhong Normal University (2004-2007), where he developed expertise in chemical applications for agriculture and materials science. His strong educational foundation has equipped him with the skills to advance research in organic synthesis and material chemistry.

🏛️ Professional Experience

Dr. Liu has been an integral part of the Shaanxi University of Technology since 2011, where he has contributed extensively to research and education in organic and materials chemistry. His tenure at the university has been marked by innovative research, mentorship of students, and collaborations in interdisciplinary scientific projects. His work focuses on the development of new organic compounds and material applications, helping to bridge the gap between fundamental chemistry and industrial applications.

🔬 Research Interests and Contributions

Dr. Liu’s research primarily revolves around organic synthesis and materials chemistry, two fundamental areas that drive advancements in pharmaceuticals, polymers, and functional materials. His expertise in organic chemistry enables him to design and synthesize novel compounds, while his focus on materials chemistry allows him to explore their potential applications in nanotechnology, coatings, and sustainable materials. His contributions have significant implications for industrial development, environmental sustainability, and advanced material engineering.

📚 Academic Impact and Influence

Dr. Liu’s research has contributed to the advancement of chemical synthesis techniques and material applications, influencing both academic research and industry practices. His work is instrumental in addressing challenges in organic material development, pesticide formulation, and new material innovations. As a researcher and educator, he has played a vital role in training the next generation of chemists and materials scientists at Shaanxi University of Technology.

🛠️ Technical Expertise

With a strong background in organic chemistry, Dr. Liu possesses expertise in synthetic methodologies, reaction mechanisms, and material characterization techniques. His work involves advanced chemical analysis, spectroscopic methods (NMR, IR, UV-Vis), chromatography techniques (HPLC, GC-MS), and material testing. His interdisciplinary approach integrates chemical engineering and materials science, making significant contributions to applied chemistry research.

🎓 Teaching and Mentorship

As a professor at Shaanxi University of Technology, Dr. Liu has been dedicated to mentoring students, guiding research projects, and promoting scientific innovation. His teaching focuses on organic chemistry, reaction mechanisms, and materials chemistry, ensuring that students develop both theoretical knowledge and practical skills. His mentorship has helped students engage in cutting-edge research and contribute to the field of applied chemistry.

🌍 Future Contributions and Legacy

Dr. Yang Liu’s work continues to shape the future of organic synthesis and materials science, contributing to sustainable chemical development, novel material applications, and advancements in industrial chemistry. As global industries focus more on green chemistry and innovative material design, his expertise will play a crucial role in developing environmentally friendly and high-performance materials. His contributions to academic research, student mentorship, and interdisciplinary scientific collaboration ensure a lasting impact on the field of chemistry.

📖Notable Publications

The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative
Authors: Shuaihua Liu, Tian Yao, Donghui Xia, Quan Liu, Guanghui Tian, Yang Liu
Journal: Molecules
Year: 2025

The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative
Authors: Yang Liu
Journal: Molecules
Year: 2025

Synthesis of a Cholesterol Derivative and Its Application in Gel Emulsion Preparation
Authors: Yang Liu, Shuaihua Liu, Qiang Zhang, Guanghui Tian
Journal: Molecules
Year: 2024

Progress in Preparation and Application of Gel-Emulsions
Authors: Yang Liu, Shuaihua Liu, Junhong Wang, Qiang Zhang, Guanghui Tian
Journal: Journal of Materials Science and Chemical Engineering
Year: 2024

The mini-review for synthesis of core@Ag nanocomposite
Authors: Rui Wu, Fagen Zhang, Xiaohui Ji, Yang Liu, Xiaohua Guo, Gunghui Tian, Bo Liu
Journal: Arabian Journal of Chemistry
Year: 2022

Xiong He | Inorganic Chemistry | Best Researcher Award

Assist. Prof. Dr. Xiong He | Inorganic Chemistry | Best Researcher Award

Guangxi University of Science and Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Xiong He began his academic journey at the Harbin Institute of Technology, where he pursued a Bachelor’s degree in Nuclear Chemical Engineering (2009-2013). During this time, he gained a solid foundation in nuclear chemistry, materials science, and energy conversion technologies. His keen interest in sustainable energy led him to continue his studies at the same institution, earning a Ph.D. in Chemical Engineering and Technology (2013-2019) under the supervision of Prof. Xin Li. His doctoral research focused on the design of hierarchical TiO₂ photoanodes for dye-sensitized solar cells (DSSCs), aiming to enhance the efficiency of solar energy harvesting and conversion. This research contributed significantly to the development of improved photovoltaic materials, which are crucial for next-generation solar energy applications.

👨‍🏫 Professional Endeavors

After completing his Ph.D., Dr. Xiong He joined Guangxi University of Science and Technology in August 2019 as an Associate Professor in the School of Electronic Engineering. In this role, he has been actively engaged in both teaching and research, with a strong focus on nanomaterials, electrocatalysis, and renewable energy technologies. His work aims to bridge the gap between academic research and practical energy applications, contributing to advancements in clean energy solutions.

🔬 Contributions and Research Focus

Dr. Xiong He’s research primarily focuses on developing high-efficiency catalysts for the electrocatalytic oxygen evolution reaction (OER), a crucial process in green hydrogen production and sustainable energy systems. His work involves designing advanced nanocatalysts, optimizing material structures, and investigating reaction mechanisms to improve energy efficiency. Additionally, his earlier research on hierarchical TiO₂ photoanodes significantly contributed to the development of dye-sensitized solar cells (DSSCs), enhancing their light absorption, charge transport, and overall efficiency. His research findings provide valuable insights into material design strategies that can be applied to various energy conversion technologies.

🌍 Impact and Influence

Dr. Xiong He’s research has made a significant impact on the fields of electrocatalysis, nanotechnology, and renewable energy. His work on catalyst development has contributed to advancing hydrogen fuel production, while his contributions to DSSCs have helped improve solar energy conversion efficiency. By integrating innovative material engineering techniques, his research has provided new strategies for developing efficient, stable, and cost-effective energy solutions. His findings are widely referenced by researchers working on sustainable energy applications, making a lasting impact on the global energy landscape.

📚 Academic Citations

Dr. Xiong He has published extensively in high-impact peer-reviewed journals, and his research has been cited by scholars in the fields of electrocatalysis, nanomaterials, and renewable energy. His contributions continue to shape the development of novel materials for energy storage and conversion, reinforcing his role as a leading researcher in clean energy technologies. His work is widely recognized for its relevance to solving energy challenges and advancing the efficiency of renewable energy systems.

🛠️ Technical Skills

Dr. Xiong He possesses a strong technical background in materials science and electrochemistry. His expertise includes nanomaterial synthesis and characterization, utilizing techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). He is also proficient in electrochemical analysis methods, including cyclic voltammetry and electrochemical impedance spectroscopy, which are essential for evaluating catalyst performance. Additionally, he has experience in photovoltaic device fabrication and efficiency testing, contributing to advancements in solar energy technologies. His skills in computational modeling for catalyst design further enhance his ability to develop and optimize high-performance materials for energy applications.

🎓 Teaching Experience

As an Associate Professor at Guangxi University of Science and Technology, Dr. Xiong He is deeply involved in teaching and mentoring students. He lectures on chemical engineering, nanomaterials, and renewable energy technologies, providing students with both theoretical knowledge and practical skills. He actively supervises undergraduate and graduate research projects, guiding students in developing innovative solutions for energy challenges. His commitment to education extends to training students in advanced laboratory techniques, ensuring that they acquire hands-on experience in material synthesis and characterization. Through his mentorship, he has inspired many students to pursue careers in scientific research and clean energy innovation.

🌟 Legacy and Future Contributions

Dr. Xiong He’s future contributions are aimed at furthering research in electrocatalysis, hydrogen energy, and solar energy conversion. He plans to expand his work on high-performance catalysts, improving their efficiency and stability for large-scale applications. Additionally, he aims to collaborate with international research teams to accelerate the development of sustainable energy solutions. His long-term vision includes bridging the gap between academic research and industrial applications, ensuring that nanomaterials and electrochemical technologies contribute effectively to real-world energy challenges. By continuing to mentor the next generation of scientists and engineers, he hopes to foster innovation and drive advancements in clean energy for a more sustainable future.

📖Notable Publications

Tuning surface hydrophilicity of a BiVO4 photoanode through interface engineering for efficient PEC water splitting

Authors: S. Yu, Shuangwei; C. Su, Chunrong; Z. Xiao, Zhehui; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: RSC Advances

Year: 2025

Rapid electrodeposition synthesis of partially phosphorylated cobalt iron phosphate for application in seawater overall electrolysis

Authors: J. Cai, Jiayang; D. Qu, Dezhi; X. He, Xiong; B. Zhu, Baoning; S. Yu, Shuangwei

Journal: Electrochimica Acta

Year: 2024

Construction of Heterostructured Ni3S2@V-NiFe(III) LDH for Enhanced OER Performance

Authors: Q. Dong, Qianqian; Q. Zhong, Qijun; J. Zhou, Jie; X. He, Xiong; S. Zhang, Shaohui

Journal: Molecules

Year: 2024

Employing shielding effect of intercalated cinnamate anion in NiFe LDH for stable and efficient seawater oxidation

Authors: J. Cai, Jiayang; X. He, Xiong; Q. Dong, Qianqian; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: Surfaces and Interfaces

Year: 2024