Xiong He | Inorganic Chemistry | Best Researcher Award

Assist. Prof. Dr. Xiong He | Inorganic Chemistry | Best Researcher Award

Guangxi University of Science and Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Xiong He began his academic journey at the Harbin Institute of Technology, where he pursued a Bachelor’s degree in Nuclear Chemical Engineering (2009-2013). During this time, he gained a solid foundation in nuclear chemistry, materials science, and energy conversion technologies. His keen interest in sustainable energy led him to continue his studies at the same institution, earning a Ph.D. in Chemical Engineering and Technology (2013-2019) under the supervision of Prof. Xin Li. His doctoral research focused on the design of hierarchical TiO₂ photoanodes for dye-sensitized solar cells (DSSCs), aiming to enhance the efficiency of solar energy harvesting and conversion. This research contributed significantly to the development of improved photovoltaic materials, which are crucial for next-generation solar energy applications.

👨‍🏫 Professional Endeavors

After completing his Ph.D., Dr. Xiong He joined Guangxi University of Science and Technology in August 2019 as an Associate Professor in the School of Electronic Engineering. In this role, he has been actively engaged in both teaching and research, with a strong focus on nanomaterials, electrocatalysis, and renewable energy technologies. His work aims to bridge the gap between academic research and practical energy applications, contributing to advancements in clean energy solutions.

🔬 Contributions and Research Focus

Dr. Xiong He’s research primarily focuses on developing high-efficiency catalysts for the electrocatalytic oxygen evolution reaction (OER), a crucial process in green hydrogen production and sustainable energy systems. His work involves designing advanced nanocatalysts, optimizing material structures, and investigating reaction mechanisms to improve energy efficiency. Additionally, his earlier research on hierarchical TiO₂ photoanodes significantly contributed to the development of dye-sensitized solar cells (DSSCs), enhancing their light absorption, charge transport, and overall efficiency. His research findings provide valuable insights into material design strategies that can be applied to various energy conversion technologies.

🌍 Impact and Influence

Dr. Xiong He’s research has made a significant impact on the fields of electrocatalysis, nanotechnology, and renewable energy. His work on catalyst development has contributed to advancing hydrogen fuel production, while his contributions to DSSCs have helped improve solar energy conversion efficiency. By integrating innovative material engineering techniques, his research has provided new strategies for developing efficient, stable, and cost-effective energy solutions. His findings are widely referenced by researchers working on sustainable energy applications, making a lasting impact on the global energy landscape.

📚 Academic Citations

Dr. Xiong He has published extensively in high-impact peer-reviewed journals, and his research has been cited by scholars in the fields of electrocatalysis, nanomaterials, and renewable energy. His contributions continue to shape the development of novel materials for energy storage and conversion, reinforcing his role as a leading researcher in clean energy technologies. His work is widely recognized for its relevance to solving energy challenges and advancing the efficiency of renewable energy systems.

🛠️ Technical Skills

Dr. Xiong He possesses a strong technical background in materials science and electrochemistry. His expertise includes nanomaterial synthesis and characterization, utilizing techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). He is also proficient in electrochemical analysis methods, including cyclic voltammetry and electrochemical impedance spectroscopy, which are essential for evaluating catalyst performance. Additionally, he has experience in photovoltaic device fabrication and efficiency testing, contributing to advancements in solar energy technologies. His skills in computational modeling for catalyst design further enhance his ability to develop and optimize high-performance materials for energy applications.

🎓 Teaching Experience

As an Associate Professor at Guangxi University of Science and Technology, Dr. Xiong He is deeply involved in teaching and mentoring students. He lectures on chemical engineering, nanomaterials, and renewable energy technologies, providing students with both theoretical knowledge and practical skills. He actively supervises undergraduate and graduate research projects, guiding students in developing innovative solutions for energy challenges. His commitment to education extends to training students in advanced laboratory techniques, ensuring that they acquire hands-on experience in material synthesis and characterization. Through his mentorship, he has inspired many students to pursue careers in scientific research and clean energy innovation.

🌟 Legacy and Future Contributions

Dr. Xiong He’s future contributions are aimed at furthering research in electrocatalysis, hydrogen energy, and solar energy conversion. He plans to expand his work on high-performance catalysts, improving their efficiency and stability for large-scale applications. Additionally, he aims to collaborate with international research teams to accelerate the development of sustainable energy solutions. His long-term vision includes bridging the gap between academic research and industrial applications, ensuring that nanomaterials and electrochemical technologies contribute effectively to real-world energy challenges. By continuing to mentor the next generation of scientists and engineers, he hopes to foster innovation and drive advancements in clean energy for a more sustainable future.

📖Notable Publications

Tuning surface hydrophilicity of a BiVO4 photoanode through interface engineering for efficient PEC water splitting

Authors: S. Yu, Shuangwei; C. Su, Chunrong; Z. Xiao, Zhehui; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: RSC Advances

Year: 2025

Rapid electrodeposition synthesis of partially phosphorylated cobalt iron phosphate for application in seawater overall electrolysis

Authors: J. Cai, Jiayang; D. Qu, Dezhi; X. He, Xiong; B. Zhu, Baoning; S. Yu, Shuangwei

Journal: Electrochimica Acta

Year: 2024

Construction of Heterostructured Ni3S2@V-NiFe(III) LDH for Enhanced OER Performance

Authors: Q. Dong, Qianqian; Q. Zhong, Qijun; J. Zhou, Jie; X. He, Xiong; S. Zhang, Shaohui

Journal: Molecules

Year: 2024

Employing shielding effect of intercalated cinnamate anion in NiFe LDH for stable and efficient seawater oxidation

Authors: J. Cai, Jiayang; X. He, Xiong; Q. Dong, Qianqian; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: Surfaces and Interfaces

Year: 2024

 

Sajad Ahmad | Inorganic Chemistry | Best Researcher Award

Mr. Sajad Ahmad | Inorganic Chemistry | Best Researcher Award

National Institute of Technology, Srinagar, India

Profile👨‍🎓

📘 Early Academic Pursuits

Sajad Ahmad completed his foundational education through the Jammu and Kashmir Board of School Education, achieving a strong academic standing from high school to intermediate level. Progressing to higher education, he earned a Bachelor of Science in 2016 and a Master’s in Inorganic Chemistry in 2019 from the University of Kashmir, where he maintained first-division scores.

🧑‍🔬 Professional Endeavors

He holds a Junior Research Fellowship, awarded by the University Grants Commission in New Delhi, starting in September 2022. This fellowship has facilitated his research in material science, specifically in environmental remediation and antibacterial applications using carbon-based and chitosan-modified materials.

🔬 Contributions and Research Focus

Her research centers around environmental remediation, photocatalysis, and antibacterial activities. His studies include advanced materials such as oxygen-doped porous carbon adsorbents, chitosan-modified ferrite, and graphitized 3D carbon. His notable publications address topics like the remediation of hexavalent chromium, fenitrothion pesticide, and heavy metal ions in aquatic environments. Currently, he has both published and communicated several high-impact research articles, demonstrating his commitment to solving pressing environmental issues through innovative materials science.

🌍 Impact and Influence

By publishing in high-impact journals such as International Journal of Biological Macromolecules and Inorganic Chemistry Communications, He has contributed significant insights into sustainable environmental practices. His work is particularly influential in the fields of inorganic and environmental chemistry, providing practical and effective solutions for pollution control.

🛠️ Technical Skills

His technical expertise includes synthesis and characterization of adsorbent and photocatalytic materials, environmental chemistry techniques, and antimicrobial assays. His research demands a comprehensive understanding of material properties, adsorption mechanisms, and photocatalytic efficiency, which he effectively applies to his work.

🧑‍🏫 Teaching Experience

While His resume does not explicitly mention teaching experience, his active research collaborations suggest skills in mentorship and knowledge transfer, particularly in guiding others through complex experimental processes and results analysis.

🌟 Legacy and Future Contributions

He is poised to make a significant impact in sustainable materials science, aiming to develop more advanced and eco-friendly materials for pollution control. His commitment to innovation and publication in impactful journals lays the foundation for a future marked by meaningful contributions to environmental remediation and applied chemistry.

Notable Publications📖