Assist. Prof. Dr. Xiong He | Inorganic Chemistry | Best Researcher Award
Guangxi University of Science and Technology, China
👨🎓Profiles
🎓 Early Academic Pursuits
Dr. Xiong He began his academic journey at the Harbin Institute of Technology, where he pursued a Bachelor’s degree in Nuclear Chemical Engineering (2009-2013). During this time, he gained a solid foundation in nuclear chemistry, materials science, and energy conversion technologies. His keen interest in sustainable energy led him to continue his studies at the same institution, earning a Ph.D. in Chemical Engineering and Technology (2013-2019) under the supervision of Prof. Xin Li. His doctoral research focused on the design of hierarchical TiO₂ photoanodes for dye-sensitized solar cells (DSSCs), aiming to enhance the efficiency of solar energy harvesting and conversion. This research contributed significantly to the development of improved photovoltaic materials, which are crucial for next-generation solar energy applications.
👨🏫 Professional Endeavors
After completing his Ph.D., Dr. Xiong He joined Guangxi University of Science and Technology in August 2019 as an Associate Professor in the School of Electronic Engineering. In this role, he has been actively engaged in both teaching and research, with a strong focus on nanomaterials, electrocatalysis, and renewable energy technologies. His work aims to bridge the gap between academic research and practical energy applications, contributing to advancements in clean energy solutions.
🔬 Contributions and Research Focus
Dr. Xiong He’s research primarily focuses on developing high-efficiency catalysts for the electrocatalytic oxygen evolution reaction (OER), a crucial process in green hydrogen production and sustainable energy systems. His work involves designing advanced nanocatalysts, optimizing material structures, and investigating reaction mechanisms to improve energy efficiency. Additionally, his earlier research on hierarchical TiO₂ photoanodes significantly contributed to the development of dye-sensitized solar cells (DSSCs), enhancing their light absorption, charge transport, and overall efficiency. His research findings provide valuable insights into material design strategies that can be applied to various energy conversion technologies.
🌍 Impact and Influence
Dr. Xiong He’s research has made a significant impact on the fields of electrocatalysis, nanotechnology, and renewable energy. His work on catalyst development has contributed to advancing hydrogen fuel production, while his contributions to DSSCs have helped improve solar energy conversion efficiency. By integrating innovative material engineering techniques, his research has provided new strategies for developing efficient, stable, and cost-effective energy solutions. His findings are widely referenced by researchers working on sustainable energy applications, making a lasting impact on the global energy landscape.
📚 Academic Citations
Dr. Xiong He has published extensively in high-impact peer-reviewed journals, and his research has been cited by scholars in the fields of electrocatalysis, nanomaterials, and renewable energy. His contributions continue to shape the development of novel materials for energy storage and conversion, reinforcing his role as a leading researcher in clean energy technologies. His work is widely recognized for its relevance to solving energy challenges and advancing the efficiency of renewable energy systems.
🛠️ Technical Skills
Dr. Xiong He possesses a strong technical background in materials science and electrochemistry. His expertise includes nanomaterial synthesis and characterization, utilizing techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). He is also proficient in electrochemical analysis methods, including cyclic voltammetry and electrochemical impedance spectroscopy, which are essential for evaluating catalyst performance. Additionally, he has experience in photovoltaic device fabrication and efficiency testing, contributing to advancements in solar energy technologies. His skills in computational modeling for catalyst design further enhance his ability to develop and optimize high-performance materials for energy applications.
🎓 Teaching Experience
As an Associate Professor at Guangxi University of Science and Technology, Dr. Xiong He is deeply involved in teaching and mentoring students. He lectures on chemical engineering, nanomaterials, and renewable energy technologies, providing students with both theoretical knowledge and practical skills. He actively supervises undergraduate and graduate research projects, guiding students in developing innovative solutions for energy challenges. His commitment to education extends to training students in advanced laboratory techniques, ensuring that they acquire hands-on experience in material synthesis and characterization. Through his mentorship, he has inspired many students to pursue careers in scientific research and clean energy innovation.
🌟 Legacy and Future Contributions
Dr. Xiong He’s future contributions are aimed at furthering research in electrocatalysis, hydrogen energy, and solar energy conversion. He plans to expand his work on high-performance catalysts, improving their efficiency and stability for large-scale applications. Additionally, he aims to collaborate with international research teams to accelerate the development of sustainable energy solutions. His long-term vision includes bridging the gap between academic research and industrial applications, ensuring that nanomaterials and electrochemical technologies contribute effectively to real-world energy challenges. By continuing to mentor the next generation of scientists and engineers, he hopes to foster innovation and drive advancements in clean energy for a more sustainable future.
📖Notable Publications
Authors: S. Yu, Shuangwei; C. Su, Chunrong; Z. Xiao, Zhehui; Q. Jin, Qianqian; Z. Sun, Zijun
Journal: RSC Advances
Year: 2025
Authors: J. Cai, Jiayang; D. Qu, Dezhi; X. He, Xiong; B. Zhu, Baoning; S. Yu, Shuangwei
Journal: Electrochimica Acta
Year: 2024
Construction of Heterostructured Ni3S2@V-NiFe(III) LDH for Enhanced OER Performance
Authors: Q. Dong, Qianqian; Q. Zhong, Qijun; J. Zhou, Jie; X. He, Xiong; S. Zhang, Shaohui
Journal: Molecules
Year: 2024
Authors: J. Cai, Jiayang; X. He, Xiong; Q. Dong, Qianqian; Q. Jin, Qianqian; Z. Sun, Zijun
Journal: Surfaces and Interfaces
Year: 2024