Md. Khalid Hossain Shishir | Nanotechnology | Best Researcher Award -1889

Mr. Md. Khalid Hossain Shishir | Nanotechnology | Best Researcher Award

Islamic University, Bangladesh

👨‍🎓Profiles

🎓 Early Academic Pursuits

Md. Khalid Hossain Shishir’s academic journey began with an exceptional performance in secondary and higher secondary education. He completed his Secondary School Certificate (SSC) in 2014 and Higher Secondary Certificate (HSC). These formative years laid a strong foundation in science, fostering his passion for applied chemistry and nanotechnology. Pursuing higher education at Islamic University, Kushtia, Bangladesh, he embarked on a Bachelor of Science (Engineering) in Applied Chemistry & Chemical Engineering. He displayed excellence in both theoretical and practical aspects of the discipline. He further enhanced his expertise by enrolling in a Master of Science (Engineering).

🏆 Professional Endeavors

Md. Khalid Hossain Shishir’s professional aspirations align with his strong academic background. He aims to contribute to the nanotechnology sector, focusing on its applications in biomedicine and environmental sustainability. His career objective reflects his determination to engage in multidisciplinary research, seeking innovative solutions through nanomaterials and biopolymer-based technologies. His commitment to excellence was recognized through the Dean’s Award (2024), where he was honored as the top-ranking student in the Faculty of Engineering and Technology at Islamic University, Kushtia.

🔬 Contributions and Research Focus

Shishir’s research primarily revolves around nanotechnology, biopolymers, and environmental remediation. His M.Sc. thesis, titled “Biopolymer-mediated Synthesis of Copper Oxide Nanoparticles: Antibacterial and Photocatalytic Properties”, delves into the potential of nanomaterials in antibacterial applications and photocatalytic degradation. Under the supervision of Dr. Gazi Md. Arifuzzaman Khan, his research investigates sustainable methods of nanoparticle synthesis, contributing to the advancement of green nanotechnology.

For his B.Sc. project, he worked on the “Hydrolytic Degradation of Cellulose: Viscometric Analysis”, which explored the breakdown of cellulose fibers and their impact on industrial applications. This project provided him with a strong understanding of polymer chemistry and degradation mechanisms.

🌍 Impact and Influence

Md. Khalid Hossain Shishir’s research has a far-reaching impact in multiple scientific domains:
✅ Biomedical Applications – Developing antibacterial nanoparticles that can be used in wound healing, coatings, and medical devices.
✅ Environmental Remediation – Employing nanomaterials for wastewater treatment through photocatalysis.
✅ Sustainable Chemistry – Utilizing biopolymers to create eco-friendly nanomaterials, reducing reliance on synthetic chemicals.

His work contributes significantly to the global shift toward green chemistry and sustainable engineering, addressing some of the most pressing environmental and healthcare challenges.

📚 Academic Citations and Publications

His research is expected to gain recognition in peer-reviewed journals and international conferences, adding to the body of knowledge in nanotechnology and applied chemistry. His dedication to scientific inquiry and innovation ensures that his findings will be referenced in future studies related to biopolymer-based nanomaterials.

🛠️ Technical Skills

Shishir has acquired a diverse set of technical and analytical skills, including:
✔ Nanomaterial Synthesis & Characterization (Copper Oxide Nanoparticles, Biopolymer-based Nanotechnology)
✔ Spectroscopy & Microscopy Techniques (UV-Vis, FTIR, SEM, XRD)
✔ Chemical Engineering Principles (Photocatalysis, Biopolymer Degradation)
✔ Analytical Techniques (Viscometric Analysis, Hydrolytic Degradation)
✔ Software Proficiency (ChemDraw, MATLAB, OriginPro)

🎓 Teaching and Mentorship

Beyond his research, Shishir is passionate about mentoring and teaching. He has actively engaged in:
🔹 Assisting junior students in laboratory research and analytical techniques.
🔹 Conducting academic discussions on nanomaterials and chemical engineering principles.
🔹 Providing guidance on research methodologies and scientific writing.

His ability to simplify complex scientific concepts makes him an effective mentor and educator, shaping the next generation of researchers in nanotechnology.

🚀 Legacy and Future Contributions

Looking ahead, Md. Khalid Hossain Shishir envisions a career that merges academic research with industrial innovation. His goal is to:
🔬 Advance sustainable nanotechnology by exploring novel biopolymer-based nanomaterials.
🏥 Develop biomedical applications of nanotechnology, particularly in antibacterial and drug delivery systems.
🌏 Contribute to environmental sustainability by implementing nanomaterials for wastewater treatment and pollution control.
📖 Publish high-impact research in top-tier journals to enhance global knowledge on green chemistry and nanoscience.

📖Notable Publications

Crystallographic biography on nanocrystalline phase of polymorphs titanium dioxide (TiO₂): A perspective static review

Authors: SI Sadia, MKH Shishir, S Ahmed, AR Aidid, MM Islam, MM Rana, …

Journal: South African Journal of Chemical Engineering

Year: 2024

Transmission electron microscopic and X-ray diffraction based study of crystallographic bibliography demonstrated on silver, copper and titanium nanocrystals: State of the Art

Authors: MKH Shishir, SI Sadia, S Ahmed, AR Aidid, MM Rana, MM Hasan, …

Journal: Asian Journal of Applied Chemistry Research

Year: 2024

Stoichiometry crystallographic phase analysis and crystallinity integration of silver nanoparticles: A Rietveld refinement study

Authors: MR Al-Mahmud, MKH Shishir, S Ahmed, S Tabassum, SI Sadia, …

Journal: Journal of Crystal Growth

Year: 2024

Green synthesis of crystalline silver nanoparticle by bio-mediated plant extract: A critical perspective analysis

Authors: SI Sadia, MKH Shishir, S Ahmed, MA Alam, SM Al-Reza, S Afrin, …

Journal: Nano-Structures & Nano-Objects

Year: 2024

Crystallographic phase biographs of copper nanocrystalline material: A statistical perspective review

Authors: S Ahmed, MKH Shishir, SI Sadia, SM Al-Reza, MMH Sachchu, AR Aidid, …

Journal: Nano-Structures & Nano-Objects

Year: 2024

Crystallinity integration and crystal growth behavior study of preferred oriented (111) cubic silver nanocrystal

Authors: MA Alam, SI Sadia, MKH Shishir, RK Bishwas, S Ahmed, SM Al-Reza, …

Journal: Inorganic Chemistry Communications

Year: 2025

Nasarul Islam | Computational Chemistry | Best Researcher Award

Assist. Prof. Dr. Nasarul Islam | Computational Chemistry | Best Researcher Award

HKM Degree College Bandipora, India

👨‍🎓Profiles

🏫 Early Academic Pursuits

He embarked on his academic journey with a passion for Theoretical Inorganic and Organic Chemistry. His research during his Ph.D. focused on developing OLED and nonlinear device materials using computational methods. He delved into the electronic structure and spectral properties of chiro-optic systems and explored structure-property relationships for materials with applications in optical, magnetic, and electrical domains. These foundational experiences shaped his expertise in theoretical chemistry and material design.

💼 Professional Endeavors

He serves as an Assistant Professor in the Department of Chemistry at HKM-Govt. Degree College, Bandipora, J&K, India, since April 11, 2017. Alongside his teaching duties, he is an Academic Counsellor for Indira Gandhi National Open University (IGNOU). His collaborative work extends to notable institutions, including the National Institute of Technology, Jalandhar, where he investigates reaction mechanisms and molecular dynamics of ionic liquids in collaboration with Dr. Vikramjeet Singh.  Previously, Dr. Islam contributed significantly to research under the mentorship of Prof. (Dr.) S. S. Chimni at Guru Nanak Dev University, Amritsar. His work focused on enantioselective product formation from organocatalyzed processes and transition-state mechanisms.

🔬 Contributions and Research Focus

His research interests are rooted in computational chemistry. He employs quantum mechanical methods to design and investigate materials for energy storage and conversion, OLED devices, and transport systems. His work bridges theoretical models and practical applications, synthesizing theoretically designed charge transport materials for experimental validation. His focus spans: The electronic and optical properties of chiro-optic systems, Energy storage and conversion materials, Quantum mechanical studies on molecular dynamics and ionic liquids.

🌟 Impact and Influence

His contributions have earned him international recognition. He is an MRSC fellow of the Royal Society of Chemistry, UK, and has been acknowledged with numerous awards, including: The DSK Postdoctoral Fellowship (UGC-India), Recognition for outstanding contributions in reviewing from Spectrochimica Acta Part A, Multiple awards for oral and poster presentations at conferences. He also serves on the editorial boards of Frontiers in Applied Chemistry and the Journal of Computational Chemistry & Molecular Modelling, influencing research dissemination in his field.

📚 Academic Citations and Publications

He has an extensive portfolio of research publications cited globally. His work on OLED materials and ionic liquids is highly regarded, reflecting his impact in theoretical and applied chemistry.

🛠️ Technical Skills

He is proficient in a variety of computational and analytical techniques, including: Quantum mechanical modeling, Molecular dynamics simulations, Spectral analysis and transport property evaluation.

👩‍🏫 Teaching and Mentorship

As an educator, He is committed to advancing chemical education. His teaching philosophy integrates research with pedagogy, inspiring students to explore complex chemical systems. His guidance extends to research projects and academic counseling, fostering a culture of scientific curiosity.

🌍 Legacy and Future Contributions

His legacy lies in bridging computational insights with real-world applications, particularly in energy systems and material design. Moving forward, he aims to expand his research on sustainable materials and enhance collaborations to address global challenges in energy and materials science.

🌟 Key Highlights

His work stands as a testament to his dedication to advancing computational chemistry, fostering innovation, and mentoring the next generation of scientists. His endeavors reflect a balanced blend of theoretical exploration, practical synthesis, and impactful teaching.

📖Notable Publications

Advancements in ionic liquid-based corrosion inhibitors for sustainable protection strategies: from experimental to computational insights

Authors: Kumar, P.; Holmberg, K.; Soni, I.; Sillanpää, M.; Chauhan, V.
Journal: Advances in Colloid and Interface Science
Year: 2024

Quantitative structure-activity relationship and ADME prediction studies on series of spirooxindoles derivatives for anti-cancer activity against colon cancer cell line HCT-116

Authors: Kaur, S.; Kaur, J.; Zarger, B.A.; Islam, N.; Mir, N.
Journal: Heliyon
Year: 2024

Unveiling the potential of NiFe layered double hydroxide (LDH)/CuWO4 S-scheme heterojunction for sulfamethoxazole photodegradation and nitrobenzene photoreduction to aniline

Authors: Sharma, R.; Sambyal, S.; Mandyal, P.; Chauhan, V.; Shandilya, P.
Journal: Journal of Environmental Chemical Engineering
Year: 2024

Fabrication of dual S-scheme based CuWO4/NiFe/WO3 heterojunction for visible-light-induced degradation and reduction applications

Authors: Sharma, R.; Islam, N.; Priye, A.; Chauhan, V.; Shandilya, P.
Journal: Journal of Environmental Chemical Engineering
Year: 2024

Cu2O/WO3: A promising S-scheme heterojunction for photocatalyzed degradation of carbamazepine and reduction of nitrobenzene

Authors: Mandyal, P.; Sharma, R.; Sambyal, S.; Chauhan, V.; Shandilya, P.
Journal: Journal of Water Process Engineering
Year: 2024

An Updated Overview on the Synthesis and Anticancer Evaluation of Quinazoline Derivatives

Authors: Kaur, J.; Kaur, S.; Anand, A.; Singh, S.; Singh, A.
Journal: ChemistrySelect
Year: 2023