Dr. Dilip Kumar Meena | Materials Chemistry | Best Researcher Award
Hemwati Nandan Bahuguna Garhwal University (A Central University) | India
Profiles
Scopus
Google scholar
Early Academic Pursuits
Dr. Dilip Kumar Meena began his academic journey with a strong foundation in Physics, completing his undergraduate studies from Rajasthan University, followed by postgraduate education from one of India’s premier institutes, the Indian Institute of Technology, Ropar. His early inclination towards solid-state physics and materials science laid the groundwork for advanced research, which he pursued rigorously during his doctoral studies at the Indian Institute of Science, Bangalore. These formative academic experiences nurtured his scientific rigor and critical thinking, equipping him with a comprehensive understanding of physical sciences and experimental research methodologies.
Professional Endeavors
Dr. Meena currently serves as an Assistant Professor at HNB Garhwal University, where he combines academic instruction with active research. His transition from a research fellow to a faculty member reflects his progressive academic trajectory and dedication to both research and teaching. During his academic career, he earned prestigious fellowships including Junior and Senior Research Fellowships, demonstrating his competence in securing competitive research opportunities and contributing to high-impact scientific work.
Contributions and Research Focus
Dr. Meena’s research primarily revolves around thermoelectric materials, nanostructured composites, and solid-state physics. He has extensively studied materials such as Sb₂Te₃, Bi₂Te₃, and ZnTe for their thermoelectric applications, focusing on improving their electrical and thermal conductivity through material processing techniques like melt solidification and top-down synthesis. His work on conduction reversal and thermal conductivity suppression in nanocomposites showcases a clear understanding of electron and phonon transport mechanisms in advanced materials. Additionally, his research on crystal growth and characterization of Weyl semimetals indicates a deep engagement with topological materials and quantum phenomena.
Impact and Influence
Dr. Meena’s publications in reputed international journals such as Journal of Alloys and Compounds, Applied Physics A, and Material Research Express reflect the global relevance of his research. His contributions have helped expand knowledge in energy-efficient thermoelectric devices, a field critical to sustainable energy technologies. Furthermore, his involvement in organizing academic seminars and delivering conference presentations illustrates his role in promoting scientific dialogue and interdisciplinary collaboration.
Academic Citations
Dr. Meena’s work has been cited in the scientific community for its novelty and technical strength. His research outputs provide critical insights into thermoelectric material design, structural transformation through solid-state reactions, and enhanced understanding of composite behavior at nanoscale. His growing citation record indicates a rising academic footprint in the domain of energy materials and applied physics.
Technical Skills
Dr. Meena possesses robust technical expertise in material synthesis, thermal conductivity measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermoelectric property characterization. He has hands-on experience with melt growth techniques, solid-state calcination kinetics, and compositional engineering of nanomaterials. His interdisciplinary skills also extend to experimental data analysis, scientific writing, and collaborative research project development.
Teaching Experience
As an Assistant Professor, Dr. Meena is actively involved in undergraduate and postgraduate teaching. His pedagogy emphasizes conceptual clarity, experimental validation, and research-oriented learning. He mentors students on academic projects, guiding them through laboratory work, literature review, and research dissemination. His participation in workshops such as scientific paper writing and his leadership in organizing university-level seminars underscore his commitment to holistic student development.
Legacy and Future Contributions
Dr. Meena is poised to contribute significantly to the advancement of materials science, particularly in the development of next-generation thermoelectric materials for energy conversion technologies. His future research aims to explore eco-friendly synthesis routes, functional composites, and device-level integration of energy materials. By nurturing a research-oriented academic culture and engaging in international collaborations, he is set to influence both academia and industry in the domain of sustainable energy.
Notable Publications
Structural transformation of MnTiO₃ with manganese dioxide and titanium dioxide influenced by solid-state calcination kinetics
Authors: Ritushree Shaily, Abhishek Parsad, Kuldeep Kumar, Dilip Kumar Meena
Journal: Next Materials
Year: 2025
Polymer-mixed Sb₂Te₃/Te nanocomposites exhibiting p-type to n-type conduction reversal and thermal conductivity reduction
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, A. M. Umarji, D. Arvindha Babu
Journal: Materials Research Express
Year: 2023
Melt Solidification Rate-Dependent Structural and Thermoelectric Properties of Sb₂Te₃/Te Nanocomposites
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, K. Ramesh
Journal: Journal of Alloys and Compounds
Year: 2022
Impact of Melt Solidification Rate on Structural and Thermoelectric Properties of n-type Bi₂Te₃ Alloy
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, S. Vinoth, K. Annapurna, K. Ramesh
Journal: Applied Physics A
Year: 2022
Role of grain alignment and oxide impurity in thermoelectric properties of textured n-type Bi–Te–Se alloy
Authors: Rapaka S. C. Bose, Dilip Kumar Meena, Paolo Mele, K. Ramesh
Journal: Journal of Physics D: Applied Physics
Year: 2021
Conclusion
Dr. Dilip Kumar Meena exemplifies the qualities of a forward-thinking academic and dedicated researcher. With a strong foundation in experimental physics, impactful publications, and an active teaching role, he is steadily building a legacy of scientific contribution and academic leadership. His trajectory indicates not only a commitment to research excellence but also a vision to shape the future of applied sciences through innovation and education.