Dilip Kumar Meena | Materials Chemistry | Best Researcher Award

Dr. Dilip Kumar Meena | Materials Chemistry | Best Researcher Award

Hemwati Nandan Bahuguna Garhwal University (A Central University) | India

Profiles

Scopus
Google scholar

Early Academic Pursuits

Dr. Dilip Kumar Meena began his academic journey with a strong foundation in Physics, completing his undergraduate studies from Rajasthan University, followed by postgraduate education from one of India’s premier institutes, the Indian Institute of Technology, Ropar. His early inclination towards solid-state physics and materials science laid the groundwork for advanced research, which he pursued rigorously during his doctoral studies at the Indian Institute of Science, Bangalore. These formative academic experiences nurtured his scientific rigor and critical thinking, equipping him with a comprehensive understanding of physical sciences and experimental research methodologies.

Professional Endeavors

Dr. Meena currently serves as an Assistant Professor at HNB Garhwal University, where he combines academic instruction with active research. His transition from a research fellow to a faculty member reflects his progressive academic trajectory and dedication to both research and teaching. During his academic career, he earned prestigious fellowships including Junior and Senior Research Fellowships, demonstrating his competence in securing competitive research opportunities and contributing to high-impact scientific work.

Contributions and Research Focus

Dr. Meena’s research primarily revolves around thermoelectric materials, nanostructured composites, and solid-state physics. He has extensively studied materials such as Sb₂Te₃, Bi₂Te₃, and ZnTe for their thermoelectric applications, focusing on improving their electrical and thermal conductivity through material processing techniques like melt solidification and top-down synthesis. His work on conduction reversal and thermal conductivity suppression in nanocomposites showcases a clear understanding of electron and phonon transport mechanisms in advanced materials. Additionally, his research on crystal growth and characterization of Weyl semimetals indicates a deep engagement with topological materials and quantum phenomena.

Impact and Influence

Dr. Meena’s publications in reputed international journals such as Journal of Alloys and Compounds, Applied Physics A, and Material Research Express reflect the global relevance of his research. His contributions have helped expand knowledge in energy-efficient thermoelectric devices, a field critical to sustainable energy technologies. Furthermore, his involvement in organizing academic seminars and delivering conference presentations illustrates his role in promoting scientific dialogue and interdisciplinary collaboration.

Academic Citations

Dr. Meena’s work has been cited in the scientific community for its novelty and technical strength. His research outputs provide critical insights into thermoelectric material design, structural transformation through solid-state reactions, and enhanced understanding of composite behavior at nanoscale. His growing citation record indicates a rising academic footprint in the domain of energy materials and applied physics.

Technical Skills

Dr. Meena possesses robust technical expertise in material synthesis, thermal conductivity measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermoelectric property characterization. He has hands-on experience with melt growth techniques, solid-state calcination kinetics, and compositional engineering of nanomaterials. His interdisciplinary skills also extend to experimental data analysis, scientific writing, and collaborative research project development.

Teaching Experience

As an Assistant Professor, Dr. Meena is actively involved in undergraduate and postgraduate teaching. His pedagogy emphasizes conceptual clarity, experimental validation, and research-oriented learning. He mentors students on academic projects, guiding them through laboratory work, literature review, and research dissemination. His participation in workshops such as scientific paper writing and his leadership in organizing university-level seminars underscore his commitment to holistic student development.

Legacy and Future Contributions

Dr. Meena is poised to contribute significantly to the advancement of materials science, particularly in the development of next-generation thermoelectric materials for energy conversion technologies. His future research aims to explore eco-friendly synthesis routes, functional composites, and device-level integration of energy materials. By nurturing a research-oriented academic culture and engaging in international collaborations, he is set to influence both academia and industry in the domain of sustainable energy.

Notable Publications

Structural transformation of MnTiO₃ with manganese dioxide and titanium dioxide influenced by solid-state calcination kinetics
Authors: Ritushree Shaily, Abhishek Parsad, Kuldeep Kumar, Dilip Kumar Meena
Journal: Next Materials
Year: 2025

Polymer-mixed Sb₂Te₃/Te nanocomposites exhibiting p-type to n-type conduction reversal and thermal conductivity reduction
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, A. M. Umarji, D. Arvindha Babu
Journal: Materials Research Express
Year: 2023

Melt Solidification Rate-Dependent Structural and Thermoelectric Properties of Sb₂Te₃/Te Nanocomposites
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, K. Ramesh
Journal: Journal of Alloys and Compounds
Year: 2022

Impact of Melt Solidification Rate on Structural and Thermoelectric Properties of n-type Bi₂Te₃ Alloy
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, S. Vinoth, K. Annapurna, K. Ramesh
Journal: Applied Physics A
Year: 2022

Role of grain alignment and oxide impurity in thermoelectric properties of textured n-type Bi–Te–Se alloy
Authors: Rapaka S. C. Bose, Dilip Kumar Meena, Paolo Mele, K. Ramesh
Journal: Journal of Physics D: Applied Physics
Year: 2021

Conclusion

Dr. Dilip Kumar Meena exemplifies the qualities of a forward-thinking academic and dedicated researcher. With a strong foundation in experimental physics, impactful publications, and an active teaching role, he is steadily building a legacy of scientific contribution and academic leadership. His trajectory indicates not only a commitment to research excellence but also a vision to shape the future of applied sciences through innovation and education.

Bunyamin Cicek | Materials Chemistry | Material Chemistry Award

Assoc. Prof. Dr. Bunyamin Cicek | Materials Chemistry | Material Chemistry Award

Hitit University, Turkey

👨‍🎓Profiles

🎓 Academic Background and Current Affiliation

Assoc. Prof. Dr. Bunyamin Cicek is a distinguished researcher in Materials Chemistry and Biomaterials, currently affiliated with Hitit University, Turkey. With extensive experience in material science, his contributions have significantly impacted the field of biomaterials and chemical engineering.

📊 Research Contributions and Focus

Dr. Cicek's research primarily revolves around materials chemistry and biomaterials, with a strong emphasis on developing advanced materials for biomedical and industrial applications. His work integrates chemical synthesis, material characterization, and application-based research, contributing to innovations in biomaterial development and material surface modifications.

🔬 Publication Metrics and Research Impact

Dr. Cicek’s research has been well recognized within the scientific community, as reflected in his publication metrics:

H-index: 8

Total Citations: 193

Total Publications: 34

Web of Science Core Collection Publications: 24

His scholarly output demonstrates his contributions to materials chemistry and the growing significance of his research in advancing biomaterial technologies.

🏆 Recognitions and Researcher Profiles

Dr. Cicek maintains an active presence in the global research community through platforms such as: Web of Science ResearcherID, ORCiD. These profiles showcase his scientific contributions, collaborations, and ongoing research endeavors, solidifying his reputation as a leading expert in materials chemistry and biomaterials.

🌍 Future Contributions and Research Vision

Dr. Cicek continues to expand the frontiers of materials science, focusing on the development of sustainable and high-performance biomaterials. His future research aims to enhance material functionalities for medical, environmental, and industrial applications, ensuring a lasting impact on the field. His dedication to scientific advancement positions him as a key contributor to cutting-edge materials research and innovation. 🚀

📖Notable Publications

  • Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties

    • Authors: N. Kurgan, Y. Sun, B. Cicek, H. Ahlatci
    • Journal: Chinese Science Bulletin
    • Year: 2012
  • Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg₂Si particles

    • Authors: B. Çiçek, H. Ahlatçı, Y. Sun
    • Journal: Materials & Design
    • Year: 2013
  • A study on the mechanical and corrosion properties of lead added magnesium alloys

    • Authors: B. Çiçek, Y. Sun
    • Journal: Materials & Design
    • Year: 2012
  • Kinetic investigation of AISI 304 stainless steel boronized in indirect heated fluidized bed furnace

    • Authors: P. Topuz, B. Çiçek, O. Akar
    • Journal: Journal of Mining and Metallurgy, Section B: Metallurgy
    • Year: 2016
  • Effects of alloying element and cooling rate on properties of AM60 Mg alloy

    • Authors: L. Elen, B. Cicek, E. Koc, Y. Turen, Y. Sun, H. Ahlatci
    • Journal: Materials Research Express
    • Year: 2019

 

Wei Lv | Materials Chemistry | Best Researcher Award

Dr. Wei Lv | Materials Chemistry | Best Researcher Award

North China Electric Power University, China

👨‍🎓Profiles

🎓 Academic Background

Dr. Wei Lv obtained his Ph.D. in Materials Chemistry from Central Iron & Steel Research Institute in 2018, specializing in the development of advanced materials for energy storage applications. His strong academic foundation has fueled his contributions to the field of energy storage and biomedicine.

🏛️ Professional Endeavors

Currently, Dr. Wei Lv serves as an Associate Professor at North China Electric Power University, China. His work bridges the gap between materials chemistry and practical energy storage solutions, making significant strides in both academic research and industrial applications.

🔬 Research Focus & Contributions

Dr. Wei Lv’s research primarily revolves around:
✔️ Aqueous Batteries & Key Materials 🔋 – Developing next-generation sustainable and high-performance energy storage solutions.
✔️ Energy Storage Materials ⚡ – Exploring novel materials for improving battery efficiency, capacity, and stability.
✔️ Biomedical Applications 🏥 – Investigating the role of energy storage materials in medical and healthcare technologies.

Through innovative research, he has made substantial contributions to the understanding and advancement of energy storage materials and their applications in sustainable technologies.

📚 Publications & Academic Impact

Dr. Lv has authored multiple SCI-indexed papers, significantly contributing to materials chemistry and energy storage research. His work has been widely cited, demonstrating its influence in the scientific community.

🛠️ Technical Expertise

Dr. Wei Lv possesses expertise in various cutting-edge research methodologies, including:
✔️ Battery Electrode Material Design & Synthesis
✔️ Electrochemical Performance Evaluation
✔️ Advanced Materials Characterization Techniques
✔️ Biocompatibility Testing for Biomedical Applications
✔️ Sustainable Energy Storage Technologies

🎓 Teaching & Mentorship

As an Associate Professor, Dr. Wei Lv actively mentors undergraduate and postgraduate students, providing them with guidance on research methodologies, experimental techniques, and scientific writing. His mentorship plays a crucial role in shaping the next generation of researchers in materials science and energy storage.

🌍 Future Contributions & Research Vision

Dr. Lv is committed to advancing sustainable energy storage solutions and biomedical applications. His future research aims to:
🔹 Develop eco-friendly and high-performance battery materials for renewable energy applications.
🔹 Explore novel materials for biomedical energy storage technologies.
🔹 Bridge materials chemistry with real-world applications in energy and medicine..

📖Notable Publications

In situ synthetic C encapsulated δ-MnO₂ with O vacancies: a versatile programming in bio-engineering

Authors: W. Lv, Z. Shen, J. Liu, J. Meng, C. Xu

Journal: Science Bulletin

Year: 2025

Discovering Cathodic Biocompatibility for Aqueous Zn–MnO₂ Battery: An Integrating Biomass Carbon Strategy

Authors: W. Lv, Z. Shen, X. Li, Y. Tian, C. Xu

Journal: Nano-Micro Letters

Year: 2024

Niobium fluoride-modified hydrogen evolution reaction of magnesium borohydride diammoniate

Authors: Y. Lv, B. Zhang, H. Huang, D. Sun, Y. Wu

Journal: Journal of Materials Science and Technology

Year: 2023