Dr. Ahmad Ghanbari | Physical Chemistry | Best Researcher Award
Yasouj University | Iran
Dr. Ahmad Ghanbari is a distinguished physicist whose research in condensed matter physics and interdisciplinary theoretical modeling has positioned him among the top two percent of scientists worldwide in 2025. With a prolific record of 44 peer-reviewed publications, Dr. Ghanbari has made influential contributions to statistical mechanics, thermodynamics, biomedical physics, and quantum systems. His innovative application of non-extensive thermodynamic entropy provided a novel and highly accurate method for predicting the dynamics, spread, and mortality rates of COVID-19, demonstrating the power of physical models in epidemiological forecasting. In biomedical physics, he has pushed scientific boundaries by modifying the classical Lotka–Volterra equation to more accurately describe the competitive behavior between normal and cancerous cells, offering new perspectives for understanding tumor growth and treatment dynamics. His groundbreaking study on the thermodynamic behavior of cancer tumors, particularly the influence of a tilted external magnetic field on interstitial fluid pressure within spherical tumors, provides valuable theoretical insights that could support advancements in cancer therapy and targeted treatment strategies. Beyond biomedical applications, Dr. Ghanbari has conducted extensive research into the thermodynamic properties of diatomic molecules, contributing to a deeper understanding of molecular interactions and energy states. His work on quantum nanostructures further demonstrates his versatility, addressing complex quantum behaviors that underpin next-generation nano-devices and materials. Complementing his research excellence, Dr. Ghanbari has dedicated three years to teaching at Yasouj University, shaping the academic and scientific development of future physicists.
Profiles : Scopus | Google Scholar
Featured Publications
Ghanbari, A. (2025). Theoretical calculations of thermal functions of diatomic molecules using shifted Deng-Fan potential. Computational and Theoretical Chemistry, 1248, 115186.
Ghanbari, A., & Khordad, R. (2025). A theoretical model to study the influence of an external tilted magnetic field on interstitial fluid flow inside a cylindrical tumor with capillaries. International Journal of Modern Physics C, 36(07), 2450251.
Ghanbari, A. (2025). Computational investigation of magnetic field effect on thermal function of diatomic molecules with anharmonic oscillator potential. Computational and Theoretical Chemistry, 1243, 114991.
Ghanbari, A., Khordad, R., & Ghaderi-Zefrehei, M. (2025). A modified Lotka–Volterra equation for the investigation of competition between normal and cancer cells. International Journal of Modern Physics C, 36(11), 1–12.
Ghanbari, A. (2024). Aharonov–Bohm flux, topological defect and magnetic field effects on the optical properties of quantum dots in a quantum-plasma environment. Journal of Computational Electronics, 23(1), 22–31.