Marjanur Rahman Bhuiyan | Computational Chemistry | Best Researcher Award

Mr. Marjanur Rahman Bhuiyan | Computational Chemistry | Best Researcher Award

Incepta Pharmaceuticals Ltd, Bangladesh

👨‍🎓Profiles

🎓 Academic Journey

Mr. Marjanur Rahman Bhuiyan has built a strong academic foundation in pharmacy and biomedical sciences. He completed his Bachelor of Pharmacy (B. Pharm) from Noakhali Science and Technology University, Bangladesh, achieving an impressive CGPA of 3.73/4.00 (Transcript) and 3.86/4.00 (WES Transcript Evaluation). His commitment to continuous learning is evident from his participation in the Fall 2023 Cell Biology Course at Harvard University’s Lakshmi Mittal & Family South Asian Institute. Prior to this, he demonstrated academic excellence from an early stage, securing a GPA of 4.92/5.00 in his Higher Secondary School Certificate (HSC) from Cumilla Government College and a perfect GPA of 5.00/5.00 in his Secondary School Certificate (SSC) from Amratoli C. Ali High School.

🏢 Professional Experience

Mr. Bhuiyan has diverse and hands-on experience in the pharmaceutical and healthcare sectors, focusing on industrial pharmacy, hospital pharmacy, and disaster response management. Currently, he serves as a Scientific Officer in the Production Unit at Incepta Pharmaceuticals Ltd., Zirabo, Savar, Bangladesh. In this role, he is responsible for overseeing pharmaceutical manufacturing processes, ensuring quality assurance, and maintaining regulatory compliance to produce high-quality medicines.

His professional journey includes valuable internship experiences in both industrial and hospital pharmacy. As a Trainee Industrial Pharmacist at Aristopharma Ltd., Shampur Plant, Dhaka, in November 2023, he gained practical knowledge in pharmaceutical manufacturing, formulation development, and quality control while adhering to Good Manufacturing Practices (GMP) and industry regulations. Additionally, his internship as a Trainee Hospital Pharmacist at the 250 Bed General Hospital, Noakhali, from August to October 2023, provided him with firsthand experience in dispensing medications, patient counseling, and prescription verification, further enhancing his understanding of hospital pharmacy operations and clinical pharmacology.

Beyond the pharmaceutical sector, Mr. Bhuiyan has actively contributed to disaster response and humanitarian aid. As an Executive of the Unit Disaster Response Team (UDRT) at the Noakhali Red Crescent Unit from January 2019 to December 2022, he played a vital role in disaster management, emergency response, and public health initiatives. His involvement in relief distribution, first-aid training, and community health awareness programs showcases his commitment to social responsibility.

🔬 Research and Scientific Interests

Passionate about pharmaceutical sciences, drug development, and healthcare innovations, Mr. Bhuiyan's research interests span pharmaceutical production, quality assurance, biopharmaceutical research, clinical pharmacy, and molecular pharmacology. His education at Harvard University (Scienspur Program) has enriched his understanding of cell biology, equipping him with advanced knowledge applicable to drug development and disease treatment.

🌍 Impact and Contributions

Through his work in pharmaceutical production, hospital pharmacy, and humanitarian services, Mr. Bhuiyan has made significant contributions to healthcare standards. His ability to integrate academic knowledge with practical experience ensures the effective implementation of pharmaceutical advancements. His efforts in disaster response and healthcare advocacy further highlight his dedication to public well-being.

🚀 Future Aspirations

Looking ahead, Mr. Bhuiyan aspires to advance pharmaceutical research, develop innovative and safe medications, and contribute to global health initiatives. He plans to pursue higher studies in pharmaceutical sciences or biomedical research, aiming to enhance drug accessibility and affordability. Additionally, he intends to continue his humanitarian efforts by promoting health awareness and disaster preparedness. With his strong academic background, professional expertise, and passion for healthcare innovation, Mr. Bhuiyan is poised to become a leader in the pharmaceutical and healthcare sectors. 🚀

📖Notable Publications

Prediction of angiogenesis suppression by myricetin from Aeginetia indica via inhibiting VEGFR2 signaling pathway using computer-aided analysis
Authors: MR Bhuiyan, KS Ahmed, MS Reza, H Hossain, SMM Siam, S Nayan, ...
Journal: Heliyon
Year: 2025

Mechanisms of Castanopsis tribuloides targeting α-glucosidase for the management of type-2 diabetes: Experimental and computational approaches
Authors: T Hasan, SMM Siam, MR Bhuiyan, E Jahan, N Nahar, MS Sakib, ...
Journal: Process Biochemistry
Year: 2024

Report of In-Plant Training at ARISTOPHARMA LTD.
Authors: MR Bhuiyan
Journal: Noakhali Science and Technology University
Year: 2024

Report of Hospital Training At 250 Bedded General Hospital, Noakhali.
Authors: MR Bhuiyan
Journal: Noakhali Science and Technology University
Year: 2024

 

Jianlong Chai | Analytical Techniques | Young Scientist Award

Dr. Jianlong Chai | Analytical Techniques | Young Scientist Award

Institute of Modern Physics, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Jianlong Chai’s academic journey is deeply rooted in the field of nuclear materials science, with a focus on high-performance ceramic composites for next-generation nuclear fission reactors. His expertise lies in understanding the complex interactions between ion beams and materials, particularly in fusion reactor environments. Through advanced material characterization techniques, he has investigated the synergistic effects of ion irradiation and plasma irradiation, paving the way for the development of radiation-resistant ceramic materials. His academic training and research experience at the Institute of Modern Physics, Chinese Academy of Sciences, have provided him with a solid foundation in experimental nuclear material science.

🏢 Professional Endeavors

As a Doctor & Research Assistant at the Institute of Modern Physics, Chinese Academy of Sciences, Dr. Chai has been actively engaged in cutting-edge research on the performance and durability of materials in extreme conditions. His work primarily focuses on developing and evaluating advanced ceramic composites, which are crucial for enhancing the structural integrity of nuclear reactors. In addition, he has contributed to national and international research initiatives, securing funding from prestigious scientific programs such as the National Natural Science Foundation of China and the National Key R&D Program of China. His collaborative research efforts have significantly advanced the understanding of fusion reactor wall materials under extreme conditions.

🔬 Contributions and Research Focus

Dr. Chai’s research has led to several groundbreaking innovations in nuclear materials science:

  • Successfully developed intergranular-strengthened and intragranular particle-toughened ceramic composites, enhancing their mechanical performance under irradiation.
  • First to observe ZrO₂ phase transformation using TEM imaging, contributing to the understanding of toughening mechanisms in triple-phase ceramic composites.
  • Refined indentation toughness evaluation methods, enabling precise assessment of the mechanical properties of multi-phase ceramics.
  • Conducted pioneering studies on the effects of ion irradiation, plasma interaction, and high-temperature displacement damage on W (tungsten) materials in fusion reactors, investigating dislocation loop size, density evolution, and nanohardness variations.

🌍 Impact and Influence

Dr. Chai’s research has had a significant impact on the development of advanced nuclear materials, particularly in the realm of fusion energy. His findings have contributed to the global scientific understanding of radiation effects on reactor materials, influencing both academic research and practical applications in nuclear reactor design. Through his published work and collaborative research, he has provided key insights into material performance under extreme irradiation conditions, addressing critical challenges in the nuclear energy sector.

📚 Academic Citations and Research Contributions

Dr. Chai has an impressive citation index of 12, reflecting the recognition and impact of his research within the scientific community. His contributions to high-performance ceramic composites and fusion reactor materials have been widely cited in leading scientific journals. Additionally, he has successfully secured multiple research grants, including:

  • National Natural Science Foundation of China (No. 12205349)
  • Gansu Youth Science and Technology Fund (No. 23JRRA652)
  • National Key R&D Program of China (No. 2022YFB3708500)

These projects highlight his ability to secure funding for high-impact research and his active role in national scientific initiatives.

⚙️ Technical Skills and Expertise

Dr. Chai is proficient in advanced material characterization and nuclear materials research techniques, including:

  • Transmission Electron Microscopy (TEM) imaging, crucial for studying microstructural changes in irradiated materials.
  • Ion irradiation studies, focusing on the effects of plasma irradiation on fusion reactor wall materials.
  • Mechanical property evaluation methods, including indentation toughness assessments for ceramic composites.
  • Nanohardness measurements to analyze radiation-induced material degradation.
  • High-temperature testing for assessing material durability under extreme conditions.

His expertise in experimental methodologies allows him to conduct high-precision studies on the behavior of nuclear materials.

📖 Teaching Experience and Mentorship

While Dr. Chai is primarily focused on research, his contributions extend to mentoring young scientists and researchers in the field of nuclear materials science. Through his involvement in scientific projects and experimental studies, he has guided students and junior researchers, helping them develop expertise in ion beam interactions, material analysis, and ceramic composite development. His hands-on mentorship ensures that the next generation of researchers is well-equipped with the knowledge and technical skills necessary for advancing nuclear materials science.

🚀 Legacy and Future Contributions

Dr. Chai is committed to pushing the boundaries of nuclear materials research, particularly in the development of radiation-resistant and high-performance ceramic materials. His future research will focus on:

  • Enhancing the toughness and stability of ceramic composites through novel strengthening mechanisms.
  • Exploring new multi-phase material systems to improve fusion reactor wall materials.
  • Advancing irradiation studies to better understand the synergistic effects of ion and plasma irradiation.
  • Contributing to large-scale research collaborations aimed at developing next-generation nuclear energy technologies.

With his strong research background, technical expertise, and innovative approach, Dr. Chai is poised to make significant contributions to the field of nuclear materials science, helping pave the way for safer and more efficient nuclear reactors.

📖Notable Publications

  • Structural damage and bubble evolution in SiC-ZrC composite irradiated with 500 keV He-ions at various temperatures
    Authors: Y. Zhu, L. Niu, J. Chai, C. Yao, Z. Wang
    Journal: Journal of the European Ceramic Society
    Year: 2025

  • Experimental investigation of microstructure and mechanical properties of β-SiC with various sintering additives supplemented by first-principles calculations
    Authors: B. Chen, L. Niu, J. Chai, X. Lu, Y. Zhu
    Journal: Ceramics International
    Year: 2025

  • Co-evolution of M23C6 precipitates and cavities in a boron-free Ni-based alloy GH3617 under high-temperature He ion irradiation: Effects on cavity swelling and mechanical properties
    Authors: P. Jin, L. Zhang, M. Cui, Z. Wang, T. Shen
    Journal: Materials Characterization
    Year: 2024