Tianjie Qiu | Electrochemistry | Best Researcher Award

Dr. Tianjie Qiu | Electrochemistry | Best Researcher Award

Peking University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Tianjie Qiu began his academic journey at Nankai University, where he pursued a Bachelor’s degree in Chemistry of Materials (2013-2017). During his undergraduate studies, he developed a strong foundation in materials science and chemistry, setting the stage for his research in advanced materials. Recognized for his academic excellence, he continued his studies at Peking University, one of China’s premier institutions. From 2017 to 2022, he completed his Ph.D. in Materials Science and Engineering, securing the top rank in his class in annual comprehensive quality evaluations. His early education laid the groundwork for his significant contributions to electrocatalysis and energy materials.

🏆 Professional Endeavors

Dr. Qiu has been an active researcher in the field of materials science and electrochemistry since 2017. His expertise spans multiple areas, including the design of ruthenium-based nanocatalysts, heterostructure engineering, and electrochemical energy storage. His work focuses on developing hierarchically porous materials and MOF-derived catalysts for various applications, such as water electrolysis and potassium-ion batteries. Through innovative material synthesis and characterization techniques, he has pioneered multiple breakthroughs in electrocatalysis and energy storage.

🔬 Contributions and Research Focus

Dr. Qiu’s research primarily focuses on the rational design of nanocomposites for electrochemical applications, contributing significantly to the fields of energy conversion and storage. One of his notable achievements includes the development of hierarchically porous ruthenium-carbon nanocatalysts through a bimetallic MOF-derived method, which enhances hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance by employing precise pore-formation strategies. Additionally, he optimized the heterostructure of Ru@RuOx to improve alkaline HER activity. His work on boron/nitrogen codoped carbon nanotubes for water electrolysis led to a universal method for synthesizing RuM (M = Ir, Co, Fe, Pt, Ag) nanoalloys while systematically analyzing the structure-performance relationship of these electrocatalysts. Furthermore, in the field of potassium-ion batteries, Dr. Qiu designed superstructured nitrogen-doped microporous carbon nanorods derived from MOFs and investigated the potassium-ion adsorption mechanism using first-principles calculations. His development of multi-element doped carbon superstructures has further enhanced potassium-ion storage performance. Through these innovations, Dr. Qiu has paved the way for next-generation catalysts and battery materials, advancing electrochemical energy technologies.

📊 Impact and Influence

Dr. Qiu’s work has gained widespread recognition in the scientific community: 26 SCI-indexed publications, h-index: 17, Total Citations: 2,390, 3 ESI Highly Cited Papers, 1 Invention Patent, 2 Co-authored Books. These achievements reflect the depth and influence of his research in the fields of electrocatalysis, energy storage, and materials science. His work has been referenced extensively, contributing to the development of high-performance catalysts and battery technologies.

🛠️ Technical Skills

Dr. Qiu possesses a diverse skill set in materials synthesis, characterization, and electrochemical analysis:

  • Nanomaterials Design: MOF-derived synthesis, porous structure engineering, heteroatom doping.
  • Electrocatalysis: Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), water electrolysis.
  • Battery Materials: Potassium-ion batteries, microporous carbon anodes, phosphorus confinement.
  • Computational Analysis: First-principles calculations, energy band analysis, adsorption studies.
  • Advanced Characterization: XRD, SEM, TEM, Raman Spectroscopy, XPS, BET surface analysis.

His expertise bridges the gap between experimental materials science and computational modeling, allowing for a deep understanding of structure-property relationships in nanomaterials.

🎓 Teaching and Mentorship

Beyond research, Dr. Qiu has been actively involved in mentoring and guiding students in materials science. As a top-ranking Ph.D. scholar, he played a crucial role in training junior researchers in advanced material synthesis and electrochemical characterization. His contributions to academia extend beyond publications, fostering a new generation of scientists in nanomaterials and sustainable energy.

🌍 Legacy and Future Contributions

Dr. Qiu’s groundbreaking work in rational catalyst design and battery materials will continue to shape the future of renewable energy and sustainable technologies. His research holds immense potential for:

  • Developing next-generation hydrogen production catalysts for clean energy.
  • Enhancing potassium-ion battery technologies as an alternative to lithium-ion storage.
  • Pushing the boundaries of nanomaterial engineering for energy applications.

With his strong publication record and innovative research, Dr. Qiu is poised to become a leading figure in materials science and energy storage, driving technological advancements in sustainable energy solutions.

📖Notable Publications

  • Metal-organic framework-derived materials for electrochemical energy applications

    • Authors: Z Liang, R Zhao, T Qiu, R Zou, Q Xu
    • Journal: EnergyChem
    • Year: 2019
  • Metal–organic framework-based materials for energy conversion and storage

    • Authors: T Qiu, Z Liang, W Guo, H Tabassum, S Gao, R Zou
    • Journal: ACS Energy Letters
    • Year: 2020
  • Covalent organic framework-based materials for energy applications

    • Authors: DG Wang, T Qiu, W Guo, Z Liang, H Tabassum, D Xia, R Zou
    • Journal: Energy & Environmental Science
    • Year: 2021
  • Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting

    • Authors: T Qiu, Z Liang, W Guo, S Gao, C Qu, H Tabassum, H Zhang, B Zhu, R Zou
    • Journal: Nano Energy
    • Year: 2019
  • Pristine hollow metal–organic frameworks: design, synthesis and application

    • Authors: T Qiu, S Gao, Z Liang, DG Wang, H Tabassum, R Zhong, R Zou
    • Journal: Angewandte Chemie International Edition
    • Year: 2021

Yi Zhao | Electrochemistry | Best Researcher Award

Prof. Dr. Yi Zhao | Electrochemistry | Best Researcher Award

Beijing University of Chemical Technology, China

👨‍🎓Profiles

👩‍🎓 Early Academic Pursuits

Zhao Yi, born in May 1991 in Xingtai City, Hebei Province, developed an early interest in materials science. She pursued her undergraduate studies at Yanshan University (2010-2014), where she earned a Bachelor of Engineering in Metal Materials under the guidance of Academician Tian Yongjun and Professor Jing Qin. Her passion for materials chemistry led her to Beihang University (BUAA), where she completed her Ph.D. in Materials Physics and Chemistry (2014-2020), supervised by Professor Liu Jinzhang. Her doctoral research laid a strong foundation for her future contributions to energy storage and advanced materials.

💼 Professional Endeavors

After obtaining her Ph.D., Zhao Yi embarked on a postdoctoral fellowship at the School of Materials Science and Engineering, Beijing Institute of Technology (2020-2022), working under the mentorship of Academician Wu Feng and Professor Chen Renjie. In November 2022, she joined the School of Chemistry at Beijing University of Chemical Technology as an Associate Professor. Her career trajectory showcases her dedication to interdisciplinary research and advancing the field of materials science.

🔬 Contributions and Research Focus

Zhao Yi's research primarily focuses on energy storage materials and devices, including aqueous zinc batteries and supercapacitors. She has also made significant advancements in the design of carbon-based organic materials and organic-inorganic composite electrodes. Additionally, her work on fuel cells and catalysts has contributed to the development of high-performance energy solutions. Her research is instrumental in shaping next-generation energy storage and conversion technologies.

🌍 Impact and Influence

As a principal investigator, Zhao Yi has led multiple prestigious projects, including:

  • National Natural Science Foundation of China for Distinguished Young Scholars (2023-2025)
  • Shandong Provincial Natural Science Foundation for Young Scholars (2023-2025)
  • Talent Introduction Project of Beijing University of Chemical Technology (2023-2025)
  • China Postdoctoral Science Foundation General Program (2020-2022, completed)
  • Guangdong Provincial Key Laboratory of Power Battery Safety (2021-2022, completed) Her research contributions have significantly influenced advancements in battery safety and energy storage efficiency.

📚 Academic Citations and Recognitions

Zhao Yi's scholarly work has been widely cited in high-impact journals, reflecting her research's influence in materials science and electrochemistry. She actively collaborates with esteemed academics and institutions, further elevating her standing in the field. Her publications serve as key references for researchers developing next-generation energy solutions.

🛠️ Technical Skills

With expertise in materials characterization and electrochemical analysis, Zhao Yi is proficient in:

  • Scanning Electron Microscopy (SEM)
  • X-ray Diffraction (XRD)
  • Electrochemical Impedance Spectroscopy (EIS)
  • Cyclic Voltammetry (CV)
  • Spectroscopic Techniques (UV-Vis, FTIR, Raman) Her technical acumen enables her to innovate in the fields of battery technology and catalyst development.

🎓 Teaching Experience

As an Associate Professor at Beijing University of Chemical Technology, Zhao Yi is deeply involved in mentoring students and guiding research projects. She integrates her cutting-edge research into her teaching, fostering a new generation of scientists specializing in materials chemistry and energy storage.

🚀 Legacy and Future Contributions

Zhao Yi's research is poised to shape the future of sustainable energy storage and conversion technologies. Her ongoing projects and innovative approaches are expected to contribute significantly to advancements in battery technology, supercapacitors, and fuel cells. With a strong foundation in both fundamental and applied research, she continues to push the boundaries of materials science for a cleaner and more energy-efficient world.

📖Notable Publications

Inhibiting Lattice Distortion of Ultrahigh Nickel Co-Free Cathode Material for Lithium-Ion Batterie

Authors: Y. Shang, Yang; Z. Xu, Zhichao; Y. Bao, Yifan; H. Yang, Huiying; J. Shen, Jixue
Journal: Nano Letters
Year: 2025

Research progress on rechargeable aluminum sulfur (Al-S) batteries based on different electrolyte system

Authors: X. Huo, Xiaogeng; Y. Zhao, Yi; S. Zhang, Shuaitao; Z. Li, Zhanyu; J. Li, Jianling
Journal: Journal of Power Sources
Year: 2025

Synergy of In Situ Heterogeneous Interphases with Hydrogen Bond Reconstruction Enabling Highly Reversible Zn Anode at −40 °C

Authors: A. Zhou, Anbin; H. Wang, Huirong; X. Hu, Xin; F. Wu, Feng; R. Chen, Renjie
Journal: Advanced Functional Materials
Year: 2025

Looking into failure mode identification driven by differential capacity in Ni-rich layered cathodes

Authors: X. Zhang, Xiaodong; E. Fan, Ersha; J. Lin, Jiao; F. Wu, Feng; L. Li, Li
Journal: Energy Storage Materials
Year: 2025

Construction of sub micro-nano-structured silicon-based anode for lithium-ion batteries

Authors: C. Su, Chen; M.S. Kurbanov, M. Sh; Y. Zhao, Yi; C. Zhang, Chengwei; G. Wang, Gongkai
Journal: Nanotechnology
Year: 2024