Neng Yu | Electrochemistry | Sustainable Chemistry Award

Assoc. Prof. Dr. Neng Yu | Electrochemistry | Sustainable Chemistry Award

East China University of Technology, China

Profiles

Early Academic Pursuits

Dr. Neng Yu began her academic journey with a strong foundation in Applied Chemistry, which cultivated her multidisciplinary perspective early on. She advanced through postgraduate studies in the same field before pursuing a doctoral degree in Optical Engineering. Her Ph.D. research was carried out at a leading national laboratory for optoelectronics in China, where she was mentored by distinguished faculty. These formative academic experiences shaped her expertise in electrochemistry, materials science, and nanotechnology—critical areas that would define her future research trajectory.

Professional Endeavors

Currently serving as an Associate Professor at East China University of Technology, Dr. Yu is also engaged internationally as a visiting scholar at a prominent Finnish institution. Her cross-border academic collaborations reflect a global outlook on applied physics and advanced materials. Within her home institution, she has spearheaded research in energy storage, battery materials, and flexible electronics, all while contributing actively to institutional research leadership and mentoring initiatives.

Research Focus and Contributions

Dr. Yu’s research centers on electrochemical energy storage systems, with a strong emphasis on aqueous zinc-ion batteries, lithium-ion batteries, and supercapacitors. She has made important contributions to the development of protective layers for zinc metal anodes that facilitate fast ion transfer and reduce dendrite formation. Additionally, she has developed binder-free electrode structures using CoSe₂ for lithium-ion batteries that offer improved electrical and ionic conductivity. Her work in designing flexible and high-performance supercapacitors—including waterproof, fiber-shaped, and stretchable devices—demonstrates her commitment to pioneering next-generation wearable energy technologies.

Funding and Research Leadership

Dr. Yu has consistently secured competitive funding as a principal investigator from national foundations, provincial science and technology departments, and open research platforms. Her research projects span areas such as new energy technologies, polymer nano-fabrication, and advanced energy materials. Her leadership in directing and completing these multidisciplinary projects showcases her ability to translate vision into impactful outcomes.

Impact and Influence

Dr. Yu’s contributions are widely recognized through over 30 scientific publications in high-impact journals such as Advanced Energy Materials and the Journal of Materials Chemistry. With 18 of these as first or corresponding author, she has demonstrated research leadership in both conception and execution. She also holds three authorized Chinese patents, signaling her focus on translating scientific research into practical and scalable innovations. Her work has significantly influenced progress in the fields of battery science and flexible energy systems.

Academic Citations and Recognition

Although specific citation metrics are not detailed, Dr. Yu’s consistent publication in leading international journals, combined with her funded research record, positions her as a respected figure within the scientific community. Her scholarly work continues to be referenced in research related to electrochemistry, nanomaterials, and advanced energy devices.

Technical Proficiency

Dr. Yu possesses a deep command of both synthesis and characterization techniques. She is proficient in material preparation methods such as hydrothermal synthesis, chemical vapor deposition, electrochemical deposition, anodic oxidation, and atomic layer deposition. Her analytical capabilities include techniques like XRD, SEM, TEM, XPS, AFM, and UV-Vis spectroscopy. She is also adept in the use of advanced electrochemical instrumentation including Autolab, PARSTAT 4000, CHI workstations, and LAND battery testing systems.

Scientific Communication and Computing

Dr. Yu is well-versed in scientific writing, peer review, and oral communication in English, which she employs effectively in both publishing and collaboration. Her computer literacy extends to software used for document preparation, data visualization, and image processing, such as Microsoft Office, 3D MAX, and Photoshop—tools that enhance the clarity and professional presentation of her research output.

Teaching and Mentorship

Beyond research, Dr. Yu has dedicated significant effort to teaching and mentoring. She has guided several student teams through innovation and entrepreneurship programs, both at national and provincial levels. Through these initiatives, she fosters research aptitude, creativity, and critical thinking in young scholars, reflecting her strong commitment to educational development and student success.

Legacy and Future Contributions

Dr. Yu continues to push boundaries in sustainable and flexible energy storage technologies. Her ongoing projects are aligned with global demands for environmentally friendly and portable energy solutions. As her career evolves, she is positioned to shape the future of energy materials through scientific innovation, interdisciplinary collaboration, and academic mentorship. Her legacy will be characterized by practical solutions grounded in strong scientific principles and a dedication to empowering the next generation of researchers.

Notable Publications

In situ electrochemical activation enabling high-performance cathodes for aqueous zinc-ion batteries
Authors: Qingpu Zeng, Shitong Zhou, Neng Yu*, Jiachen Huo, Changfang Sun, Kai Guo*
Journal: Journal of Materials Chemistry A
Year: 2025

Engineering aqueous electrolytes with a trifunctional additive for robust zinc anodes across a wide temperature range
Authors: Neng Yu, Shiya Lin, Shitong Zhou, Ye Li, Jiating Li, Qingpu Zeng, Lu Chen, Lei Wang, Kai Guo*, Xianfu Wang*, Yiju Li*
Journal: Energy Storage Materials
Year: 2025

Dual-function additive for simultaneously boosting the stability and energy density of aqueous zinc ion hybrid capacitors
Authors: Kai Guo, Jiating Li, Shiya Lin, Lu Chen, Neng Yu*, Yiju Li*
Journal: Chinese Chemical Letters
Year: 2025

Metallic Vanadium Activated by In-Situ Dissolution-Deposition Process for Superior Aqueous Zinc Ion Battery Cathode
Authors: Kai Guo, Ye Li, Changchen Yang, Yijing Xiang, Shanqi Pan, Qingpu Zeng, Zhuyao Li, Neng Yu*, Xianfu Wang*
Journal: Chemical Communications
Year: 2025

Highly Reversible Zinc Anode Enabled by Trifunctional Diethylenetriaminepentaacetic Acid Additive
Authors: Shiya Lin, Wang Zhao, Yisha Guo, Neng Yu*, Kai Guo*, Xianfu Wang*
Journal: ACS Energy Letters
Year: 2024

Jing Liu | Electrochemistry | Best Researcher Award

Dr. Jing Liu | Electrochemistry | Best Researcher Award

Ningxia University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Jing Liu began her academic journey with a deep interest in agricultural and food sciences, which led her to pursue a Ph.D. in Agricultural Engineering from Shandong University of Technology. Her academic rigor and potential in the interdisciplinary field of bioelectronics and food quality sensing became evident early on. In 2022, she expanded her international exposure as a visiting scholar at Seoul National University, where she deepened her expertise in biomimetic and nanomaterial-based sensors. Her early research laid a solid foundation in understanding flavor chemistry, particularly starting with umami molecules, which evolved into more complex biomimetic systems inspired by human sensory perception.

🏛️ Professional Endeavors

Since May 2024, Dr. Liu has been serving as an Associate Professor at Ningxia University, China. Her swift transition into this academic leadership role reflects her outstanding performance and potential as a young researcher. She has actively led cutting-edge research projects, including a National Natural Science Foundation of China (NSFC) Youth Project, while also taking on multiple academic service roles. Her positions on editorial boards and in professional societies demonstrate a growing influence and recognition within the fields of food biosensing and digital food technologies.

🔬 Contributions and Research Focus

Dr. Liu’s core research revolves around the development of bioelectronic sensing platforms for evaluating food flavor quality, bridging agricultural engineering with nanotechnology and sensory biology. Her work innovatively combines nanomaterials like MXenes, metal-organic frameworks (MOFs), and hydrogels to create biomimetic sensors. She focuses on (i) designing antifouling hydrogel matrices, (ii) building nanocomposite interfaces that mimic human taste receptors, (iii) detecting volatile and non-volatile compounds across solid-liquid-gas interfaces, and (iv) unraveling the mechanisms of signal transduction in biosensor systems. Her vision is to develop real-time, highly specific biosensors that can mimic human senses—paving the way for smart packaging and AI-integrated digital food systems.

🌍 Impact and Influence

Despite being in the early stages of her professorial career, Dr. Liu has already made meaningful contributions to food technology and sensor development. She has published 10 scientific papers, with 9 appearing in Q1 SCI journals as first or co-first author—underscoring the high quality and relevance of her research. Her work has laid the groundwork for practical applications in food freshness detection, flavor profiling, and intelligent packaging systems. Her coaching efforts led student teams to achieve Gold and Best Business Value awards in the prestigious 2024 China International College Students’ Innovation Competition, highlighting her mentorship abilities and entrepreneurial foresight.

📚 Academic Citations

Although still early in her academic journey, Dr. Liu’s scholarly work is gaining traction within the research community, particularly in the fields of food biosensing, flavor science, and nanomaterial applications. Her high journal quality publication ratio (Q1 SCI) reflects the rigor and novelty of her research, suggesting a promising future in terms of citations and academic influence.

🧪 Technical Skills

Dr. Liu is proficient in a range of interdisciplinary tools and technologies, including the synthesis and characterization of nanomaterials (MXenes, MOFs), hydrogel engineering, sensor fabrication, bioelectronic signal analysis, and real-time flavor detection systems. Her expertise in interfacing nanomaterials with biological mechanisms makes her uniquely positioned to innovate at the intersection of materials science and sensory biology.

👩‍🏫 Teaching Experience

At Ningxia University, Dr. Liu has begun shaping the next generation of researchers and professionals in food science and sensor technology. Her teaching integrates practical research experience with theoretical understanding, and she actively mentors students in research and innovation projects. Her role as a coach in major national competitions showcases her ability to guide students beyond the classroom and into competitive, high-impact environments.

🤝 Editorial & Professional Roles

Dr. Liu serves as a Youth Editorial Board Member for Journal of Future Foods and Food Research and Development, and holds a similar position in Food and Medicine Homology. Her professional affiliations include being a council member of the Chinese Association of Traditional Chinese Medicine Informatics and Deputy Secretary-General of its Subcommittee on Digital Detection of Food and Drug Quality and Safety. These roles highlight her recognition as an emerging leader in the integration of food science, informatics, and sensor technologies.

🌟 Legacy and Future Contributions

Dr. Liu is building a legacy as a trailblazer in digital flavor sensing and bioinspired sensor development. Her research holds transformative potential for real-world applications, such as intelligent food packaging, freshness verification systems, and smart kitchen technologies. With her innovative mindset, strong academic foundation, and growing leadership, she is poised to shape the future of food quality assurance in the era of smart agriculture and the Internet of Things (IoT). Her continued work will likely intersect with AI, digital health, and consumer food technology—making her a vital contributor to global food innovation.

📖Notable Publications

Au₂PtNPs/hydrogel based multichannel bionic sensor for rapid evaluation of food flavor
Journal: Food Chemistry
Year: 2025

Recent progress on bionic umami sensors for analysis of food flavor: A review
Journal: (Journal name not provided)
Year: 2025

Electrochemical aptamer sensor based on bimetallic CuZr-MOF and AuNPs for ultrasensitive detection of organophosphorus pesticides in vegetables
Journal: Journal of Food Composition and Analysis
Year: 2025

Umami peptide synergy unveiled: A comprehensive study from molecular simulation to practical validation of sensing strategy
Journal: Biosensors and Bioelectronics
Year: 2025

Bridge-type aptamer-Au@Pt-MXene-based sensing platform for detection of multiple organophosphorus pesticides
Journal: Microchemical Journal
Year: 2025

 

Xuexue Pan | Electrochemistry | Best Researcher Award

Mr. Xuexue Pan | Electrochemistry | Best Researcher Award

Zhongshan Polytechnic, China

👨‍🎓Profiles

Early Academic Pursuits 🎓

Dr. Xuexue Pan’s academic journey began with a Ph.D. from Poznan University of Technology, Poland, where he studied under Professor François Béguin, a globally recognized expert in supercapacitors. His research focused on metal ion capacitors and the mechanisms of two-dimensional graphene-like materials in storing metal ions. He worked extensively on pre-metallization technology, multifunctional efficiency-enhancing materials, and hybrid capacitors, aiming to overcome the low capacitance and energy density limitations of traditional supercapacitors. These early research endeavors laid the groundwork for his future contributions to the field of electrochemical energy storage.

Professional Endeavors 🏢

Following his doctoral studies, Dr. Pan continued his research as a postdoctoral fellow at Poznan University of Technology (2021-2023), collaborating with Professor Qamar Abbas on the development of hybrid ion capacitors. Since June 2023, he has been a visiting associate researcher at the Functional Nanomaterials Laboratory of Al-Farabi Kazakh National University, where he focuses on hybrid fluid capacitors and battery technology. In addition to his research, he serves as a full-time teacher at Zhongshan Polytechnic, actively contributing to the academic and scientific community. He work in energy storage has earned international recognition, including his leadership in various natural science fund projects and participation in prestigious scientific research initiatives.

Contributions and Research Focus 🔬

Dr. Pan’s research is centered on electrochemical energy storage, metal ion capacitors, and hybrid ion capacitors. He specializes in developing two-dimensional graphene-like materials for efficient ion storage, advancing pre-metallization techniques for organic metal ion capacitors, and optimizing the structural design of hybrid metal ion capacitors. His innovative work has provided solutions to challenges in energy storage, including low capacitance, poor energy efficiency, and limited industrial scalability. Additionally, his expertise extends to battery electrode materials, gas-free oxidation technology, and pre-treatment processes that enhance the performance of energy storage devices. His research has been instrumental in bridging the gap between fundamental science and industrial applications.

Impact and Influence 🌍

Dr. Pan’s contributions have been widely recognized, both nationally and internationally. He has received prestigious honors such as the Young Scientist Award from the Institute of Combustion in Kazakhstan and the Best Research Award from Al-Farabi Kazakh National University. Additionally, he has won multiple national and provincial innovation and entrepreneurship awards, including the second prize in the 8th National Vocational College Polymer Materials Innovation and Entrepreneurship Competition and the second prize in the “Challenge Cup” Green Guangdong Special Competition. These accolades highlight his significant impact on the development of electrochemical energy storage technologies.

Academic Citations and Research Contributions 📚

Dr. Pan has an impressive publication record, having authored 31 high-impact journal papers in leading scientific journals such as Energy Storage Materials, Chemical Engineering Journal, and the Journal of Power Sources. He has also filed 10 national patents related to battery technology and capacitors, participated in 10 international conferences, and played a key role in four domestic research projects. Additionally, he has contributed to two major international research funds, including projects supported by the European Regional Development Fund – Polish Science Fund and the Ministry of Science and Higher Education Fund of the Republic of Kazakhstan. His research is widely cited, further establishing his as an influential figure in the field of electrochemical energy storage.

Technical Skills and Expertise ⚙️

Dr. Pan possesses extensive technical expertise in electrochemical analysis, material characterization, and energy storage systems. He is proficient in techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and BET surface area analysis. His knowledge of battery electrode materials, gas-free oxidation processes, and pre-metallization techniques has contributed to advancements in next-generation energy storage solutions. These technical skills have played a crucial role in the development of high-performance capacitors and batteries.

Teaching Experience and Mentorship 📖

As an educator, Dr. Pan is committed to mentoring young researchers and students. At Zhongshan Polytechnic, he integrates cutting-edge research into teaching, fostering a scientific mindset among students. His mentorship has led to numerous student achievements in innovation and entrepreneurship competitions. By bridging the gap between academic research and real-world applications, he continues to nurture the next generation of scientists in the field of electrochemical energy storage.

Legacy and Future Contributions 🚀

Looking ahead, Dr. Pan is dedicated to furthering his contributions to the field of electrochemical energy storage and sustainable energy solutions. He aims to expand research on hybrid capacitors, develop advanced electrode materials, and collaborate with international research institutions to accelerate industrial applications. With his strong research background, technical expertise, and passion for innovation, he is set to play a pivotal role in the advancement of high-performance supercapacitors and batteries, driving the future of sustainable energy storage technologies.

📖Notable Publications

Hydrothermal synthesis and photoluminescence of single-crystalline LaVO4:Eu3+ nanorods/nanosheaves
Authors: J. Wang, X. Pan, Z. Li, J. Ke, Z.A. Supiyeva
Journal: MRS Communications
Year: 2024

Microcrystalline-Fe2P4O12 as eco-friendly and efficient anode for high-performance dual-ion battery
Authors: Y. He, X. Pan, Q. Long, C. Li, Q. Abbas
Journal: Chemical Engineering Journal
Year: 2024

Cryolithionite-Based Pseudocapacitive Electrode for Sustainable Lithium-ion Capacitors
Authors: L. Ladenstein, X. Pan, H.Q. Nguyen, Q. Abbas, D. Rettenwander
Journal: Batteries and Supercaps
Year: 2024

Using metal–organic frameworks to create carbon-encased Ni@Ni(OH)2 for high-performance supercapacitors
Authors: J. Wang, X. Pan, P. Peng, Z.A. Supiyeva, Q. Liu
Journal: Journal of Nanoparticle Research
Year: 2024

Kiran Aftab | Electrochemistry | Best Researcher Award -1735

Dr. Kiran Aftab | Electrochemistry | Best Researcher Award

Government College University Faisalabad, Pakistan

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Kiran Aftab embarked on her academic journey with a strong foundation in science, excelling in her early education. She secured first-division results in her Matric (1993) and F.Sc. (1996) from Government Girls High School and Government College for Women, Madina Town, Faisalabad. Her passion for chemistry led her to pursue a B.Sc. (1998) from Punjab University, followed by an M.Sc. (2002) in Chemistry at the University of Agriculture, Faisalabad, where she focused on the production of active carbon and furfural from Kai using chemical treatments. Her research journey intensified during her M.Phil. (2004), where she optimized conditions for producing Copper Phthalocyanin Blue pigment. This was further elevated in her Ph.D. (2013) at Government College University Faisalabad/NIBGE, where she worked on developing low-cost methodologies for removing toxic metals (Pb, Zn) using fungal biomass, showcasing her commitment to environmental chemistry and sustainable solutions.

🏆 Professional Endeavors

With a career spanning over two decades, Dr. Kiran Aftab has made significant contributions to academia and research. Her journey began as a Lecturer (BPS-18) at GCUF in 2003, where she nurtured young minds for over a decade. She progressively advanced to Assistant Professor (BPS-19) in 2014 and later took on higher responsibilities, including serving in an officiating role (OPS). From 2015 to 2018, she was on deputation at GCWUF, further expanding her influence in academia. In 2021, she was appointed Assistant Professor (BPS-19) at GCUF, and by the end of 2022, she was promoted to Associate Professor (BPS-20), solidifying her role as a leading educator and researcher.

🔬 Contributions and Research Focus

Dr. Kiran Aftab’s research primarily focuses on environmental chemistry, sustainable materials, and industrial applications. Her doctoral work on fungal biomass for toxic metal removal highlights her dedication to eco-friendly solutions for pollution control. She has extensively worked on: Heavy Metal Removal: Developing innovative, cost-effective methods for mitigating industrial pollutants. Pigment Chemistry: Optimizing the synthesis of industrial pigments like Copper Phthalocyanin Blue. Waste Utilization: Transforming agricultural waste into valuable chemical compounds, as seen in her M.Sc. research. Her work contributes to both theoretical advancements and real-world applications in sustainable chemistry.

🌍 Impact and Influence

Dr. Aftab’s contributions to environmental chemistry have practical implications for industrial waste management and pollution control. By developing low-cost methodologies for metal removal, she has paved the way for sustainable industrial practices. Her research has influenced scholars and professionals working in green chemistry, bioremediation, and industrial waste management. As an HEC-approved research supervisor, she continues to mentor aspiring chemists, ensuring that her expertise is passed on to the next generation of researchers.

📚 Academic Citations and Recognitions

Dr. Kiran Aftab’s research has been recognized in academia, with citations reflecting the significance of her work in environmental remediation and industrial chemistry. Her studies on fungal biomass applications and pigment optimization have contributed to scientific discussions in waste management and sustainable materials. Her active involvement in national and international research platforms, along with her ORCID profile (0000-0003-4180-8623), underscores her standing as a distinguished scholar.

🛠️ Technical Skills

Dr. Aftab possesses a robust technical skill set in analytical chemistry, industrial pigment formulation, and environmental pollution control. Her expertise includes:

Bioremediation Techniques for heavy metal removal.

Pigment Chemistry for industrial applications.

Analytical Instrumentation for chemical characterization.

Sustainable Waste Utilization strategies.

Her interdisciplinary approach integrates chemistry, environmental science, and industrial applications.

👩‍🏫 Teaching and Mentorship Experience

With 20 years of teaching experience, Dr. Kiran Aftab has played a pivotal role in shaping the academic careers of students at Government College University Faisalabad. As a mentor and research supervisor, she has guided numerous postgraduate students in their theses and research projects. Her ability to bridge theoretical knowledge with practical applications has made her a respected educator in the field of chemistry.

🌟 Legacy and Future Contributions

Dr. Kiran Aftab’s dedication to research and education continues to impact the scientific community. Her work in environmental chemistry and sustainable industrial practices serves as a model for future researchers. Looking ahead, she aims to: Expand research in green chemistry and eco-friendly materials. Mentor more postgraduate researchers in environmental remediation. Collaborate on international research projects to address global environmental challenges. Through her relentless pursuit of scientific excellence, Dr. Aftab is leaving a lasting legacy in both academia and industry.

📖Notable Publications

Dyes adsorption using clay and modified clay: A review

  • Authors: A. Kausar, M. Iqbal, A. Javed, K. Aftab, H. N. Bhatti, S. Nouren
  • Journal: Journal of Molecular Liquids
  • Year: 2018

Determination of different trace and essential elements in lemon grass samples by X-ray fluorescence spectroscopy technique

  • Authors: K. Aftab, M. D. Ali, P. Aijaz, N. Beena, H. J. Gulzar, K. Sheikh, Q. Sofia
  • Journal: International Food Research Journal
  • Year: 2011

Iron oxide nanoparticles immobilized Aspergillus flavus manganese peroxidase with improved biocatalytic, kinetic, thermodynamic, and dye degradation potentialities

  • Authors: U. Kalsoom, Z. Ahsan, H. N. Bhatti, F. Amin, R. Nadeem, K. Aftab, M. Bilal
  • Journal: Process Biochemistry
  • Year: 2022

Enzyme‐assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation

  • Authors: Z. Ahsan, U. Kalsoom, H. N. Bhatti, K. Aftab, N. Khalid, M. Bilal
  • Journal: Journal of Basic Microbiology
  • Year: 2021

Wastewater-irrigated vegetables are a significant source of heavy metal contaminants: Toxicity and health risks

  • Authors: K. Aftab, S. Iqbal, M. R. Khan, R. Busquets, R. Noreen, N. Ahmad, S. G. T. Kazimi
  • Journal: Molecules
  • Year: 2023

Physico-chemical study for zinc removal and recovery onto native/chemically modified Aspergillus flavus NA9 from industrial effluent

  • Authors: K. Aftab, K. Akhtar, A. Jabbar, I. H. Bukhari, R. Noreen
  • Journal: Water Research
  • Year: 2013

Batch and column study for Pb(II) remediation from industrial effluents using glutaraldehyde–alginate–fungi biocomposites

  • Authors: K. Aftab, K. Akhtar, A. Jabbar
  • Journal: Ecological Engineering
  • Year: 2014