Avan Kumar | Chemical Engineering | Best Researcher Award

Dr. Avan Kumar | Chemical Engineering | Best Researcher Award

Arizona State University, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Avan Kumar’s academic journey began with a Bachelor of Technology in Polymer Science and Chemical Technology from Delhi Technological University (DTU) (2013–2017). Building on this strong foundation, he pursued a Master of Technology in Chemical Engineering at the prestigious Indian Institute of Technology (IIT) BHU, Varanasi (2017–2019), where his research focused on enhancing solar module efficiency using luminescent dyes. His commitment to advancing sustainable technologies culminated in a Ph.D. in Chemical Engineering at IIT Delhi (2019–2023), specializing in the application of deep learning and natural language processing (NLP) for sustainable process development. This rigorous academic path laid the groundwork for his later innovations in AI-driven sustainability solutions.

🧑‍💼 Professional Endeavors

Dr. Kumar is currently serving as a Post-Doctoral Researcher at the School of Sustainability, Arizona State University (ASU), USA, under the mentorship of Prof. Bhavik R. Bakshi. Since December 2023, he has been actively engaged in designing customized large language models (LLMs) that extract structured databases from unstructured texts, aiming to create comprehensive life cycle inventories (LCIs) and circular reaction networks, particularly for chemical and plastic industries. His professional endeavors seamlessly blend chemical engineering with advanced AI technologies, showcasing his interdisciplinary expertise.

🧠 Contributions and Research Focus

Throughout his academic and research career, Dr. Kumar’s work has revolved around Generative AI, Large Language Models, Explainable AI, Natural Language Processing, and Sustainable Process Development. His doctoral research featured the development of a deep learning-integrated photo-catalyst classification model, data-driven optimization frameworks using Gaussian Process Regression and Multi-Objective Bayesian Optimization, and the creation of domain-specific LLMs such as “Extend-SciBERT,” “H2-BERT,” “Recycle-BERT,” and “CCU-LlaMA.” His innovative use of AI tools for chemical sustainability reflects his forward-thinking vision of the industry.

🌍 Impact and Influence

Dr. Kumar’s pioneering research has significant implications for green energy transition, plastic circular economy promotion, and carbon capture advancements. His customized language models have streamlined research processes across sectors like hydrogen production and plastic recycling, thus supporting industries to adapt more sustainable practices. By bridging AI and chemical engineering, he influences both academia and industry towards achieving climate goals and sustainability targets.

📚 Academic Citations

While still at an early stage of his postdoctoral career, Dr. Kumar’s contributions, particularly in AI-driven sustainability research, have begun attracting scholarly attention. His interdisciplinary approach promises a growing impact, with citations expected to increase as his LLM models and sustainable frameworks gain wider academic and industrial adoption.

🛠️ Technical Skills

Dr. Kumar possesses strong technical skills in Deep Learning, Natural Language Processing (NLP), Explainable Machine Learning (SHAP, GPR), Multi-Objective Optimization (MOBO), Large Language Model Fine-Tuning, and Life Cycle Inventory (LCI) Development. His interdisciplinary expertise also extends to Sustainable Process Design, Solar Energy Systems, and Circular Reaction Pathway Mapping, demonstrating a rare blend of computational and engineering acumen.

👨‍🏫 Teaching Experience

During his Ph.D. tenure at IIT Delhi, Dr. Kumar contributed actively to the academic community through mentorship roles and lab supervision. His engagement with students in interdisciplinary projects related to AI in chemical processes fostered a collaborative and innovative learning environment. His teaching philosophy focuses on integrating modern computational tools into chemical engineering curricula to prepare future-ready engineers.

🌟 Legacy and Future Contributions Highlight

Dr. Kumar’s legacy will be defined by his trailblazing integration of AI into chemical engineering to support sustainable development. His ongoing work at ASU promises to revolutionize the way industries build life cycle inventories and circular process models. In the future, he envisions advancing explainable, domain-specific AI systems that not only enhance industrial efficiency but also promote ecological responsibility. His contributions are poised to play a critical role in shaping next-generation sustainable technologies and AI innovations for environmental stewardship.

📖Notable Publications

An NLP-Based Framework for Extracting the Catalysts Involved in Hydrogen Production from Scientific Literature
Authors: Avan Kumar, Hariprasad Kodamana
Journal: Computer Aided Chemical Engineering (Book Chapter)
Year: 2023

A Convolutional Neural Network-Based Gradient Boosting Framework for Prediction of the Band Gap of Photo-Active Catalysts
Authors: Avan Kumar, Sreedevi Upadhyayula, Hariprasad Kodamana
Journal: Digital Chemical Engineering
Year: 2023

Recycle-BERT: Extracting Knowledge about Plastic Waste Recycling by Natural Language Processing
Authors: Avan Kumar, Bhavik R. Bakshi, Manojkumar Ramteke, Hariprasad Kodamana
Journal: ACS Sustainable Chemistry & Engineering
Year: 2023

Multiobjective Bayesian Optimization Framework for the Synthesis of Methanol from Syngas Using Interpretable Gaussian Process Models
Authors: Avan Kumar, K.K. Pant, Sreedevi Upadhyayula, Hariprasad Kodamana
Journal: ACS Omega
Year: 2023

A Text Mining Framework for Screening Catalysts and Critical Process Parameters from Scientific Literature – A Study on Hydrogen Production from Alcohol
Authors: Avan Kumar, Swathi Ganesh, Divyanshi Gupta, Hariprasad Kodamana
Journal: Chemical Engineering Research and Design
Year: 2022

 

Muhammad Waleed | Thermodynamics | Best Researcher Award -1600

Mr. Muhammad Waleed | Thermodynamics | Best Researcher Award

NFC Institute of Engineering & Fertilizer Research, Faisalabad, Pakistan

👨‍🎓Profiles

🎓 Early Academic Pursuits

Muhammad Waleed embarked on his academic journey with a focus on excellence and determination. He completed his Matriculation in Science (Biology) from Government Muslim High School, Janiwala, securing 887/1100 marks (81%). His pursuit of knowledge continued with FSC in Pre-Engineering at Allama Iqbal Science and Commerce College, Gojra, where he achieved 900/1100 marks (82%). Finally, he graduated with a Bachelors in Mechanical Engineering (2018–2022) from UET Lahore via NFC-IEFR FSD, earning an impressive CGPA of 3.402/4 (85%).

💼 Professional Endeavors

Muhammad Waleed has gained extensive professional experience in diverse roles across various industries: Internee at Suraj Cotton Mills Limited, Lahore, focusing on OSHA safety guidelines, manufacturing processes, inventory control, and management policies. Trainee at Chenab Steel Mills, where he developed an understanding of manufacturing processes, product finishing, and quality control analysis. Mechanical Design Engineer at Gourmet Foods – Gojra-Samundari Unit, where he conceptualizes and develops new products, creates detailed CAD models, ensures compliance with safety standards, and optimizes designs for cost-effective production.

📚 Contributions and Research Focus

Muhammad Waleed has significantly contributed to the field of mechanical engineering through his involvement in various high-impact projects, including: Final Year Project: Numerical Analysis of Shell & Tube Heat Exchanger. Collaborative Research: CFD Analysis of Chevron, Flat Plate, and Shell & Tube Heat Exchangers (Remote-UK). Industry-Driven Designs: 3D Design of a 40-Ton D-Type Water Tube Boiler for Gourmet Sugar Mills and a Bio Organo Phosphate Plant for Gourmet Tagra. His research primarily focuses on advancing mechanical design, thermal engineering, and computational fluid dynamics.

🌟 Impact and Influence

Through his publications, such as the "Numerical Analysis of Shell and Tube Heat Exchanger with Combination of Different Baffles", Muhammad Waleed has made noteworthy contributions to engineering knowledge. His work is not only academically robust but also has practical implications for industrial advancements in heat exchanger efficiency and energy systems.

🛠️ Technical Skills

Muhammad Waleed demonstrates exceptional proficiency in technical tools and software, including: Design Tools: SolidWorks, AutoCAD, FreeCAD, KeyShot. Simulation Software: ANSYS Workbench, MATLAB. Data Analysis Tools: Origin Pro. His expertise enables him to deliver innovative solutions in mechanical design and simulation.

👨‍🏫 Teaching and Mentorship Experience

As a proactive learner and team player, Muhammad Waleed has developed teaching and mentorship skills throughout his academic and professional journey. He effectively collaborates with peers and juniors on technical projects, sharing his expertise in CAD, simulation, and mechanical systems analysis.

🔑 Legacy and Future Contributions

Muhammad Waleed envisions a legacy of innovation and excellence in mechanical engineering. His future goals include contributing to sustainable energy systems, optimizing manufacturing processes, and mentoring the next generation of engineers to uphold the highest standards of quality and creativity.

📖Notable Publication

Numerical analysis of shell and tube heat exchanger with combination of different baffles

Authors: Muhammad Waleed, Syed Murawat Abbas Naqvi, Hammad Mustafa, Mohammed K. Al Mesfer, Mohd Danish, Kashif Irshad, Hasan Shahzad
Journal: Case Studies in Thermal Engineering
Year: 2024