Sushmita Bhushan | Analytical Chemistry | Best Researcher Award

Mrs. Sushmita Bhushan | Analytical Chemistry | Best Researcher Award

Netaji Subhas University of Technology, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mrs. Sushmita Bhushan has consistently demonstrated academic excellence throughout her educational journey. She began with a First Division in Secondary and Senior Secondary education under the U.P. Board. Building on this foundation, she earned a Diploma in Electronics Engineering from the Institute of Engineering & Rural Technology, Prayagraj. Her passion for electronics and communication led her to pursue the A.M.I.E in Electronics & Communication Engineering from IEI, Kolkata. She further specialized by obtaining her M.Tech in RF & Microwave Engineering with First Division from Guru Gobind Singh Indraprastha University, New Delhi, demonstrating her growing expertise in high-frequency systems.

🧑‍💼 Professional Endeavors

Professionally, Mrs. Bhushan has acquired significant experience in both academic and research environments. She began her career as a Technical Assistant in the Department of Electronics & Communication Engineering at the Indian Institute of Information Technology (IIIT), Prayagraj. Later, she joined Netaji Subhas University of Technology (NSUT), Delhi, as a University Research Fellow (URF), where she continues to contribute to the university’s research excellence.

🔬 Contributions and Research Focus

Currently pursuing her Ph.D. in Electronics and Communication Engineering from NSUT, Delhi, Mrs. Bhushan focuses on the Design and Implementation of Dielectric Resonator Antennas for Jamming Applications, under the supervision of Prof. Rajveer Singh Yaduvanshi. Her research plays a crucial role in developing compact, efficient, and high-performance antenna systems for electromagnetic interference and defense-related communication disruption technologies. She is also a co-inventor of a granted Indian Patent titled “An Animal Scarer Device”—a testament to her innovation in applied electronics.

🌍 Impact and Influence

Through her academic research and patent contributions, Mrs. Bhushan has added value to both industrial and defense communication sectors. Her work is particularly relevant in national security applications and intelligent wireless systems. By integrating theory and practical design, she has become a promising contributor in the RF and microwave community.

📚 Academic Cites and Publications

Her academic impact is further reflected through co-authored publications and ongoing research dissemination in peer-reviewed journals and conferences. These include collaborative works with renowned researchers such as Prof. Yaduvanshi and others in advanced antenna and RF system design—though detailed citations were not listed in this summary, they reflect growing academic recognition.

🛠️ Technical Skills

Mrs. Bhushan is proficient in several advanced design and simulation tools, including HFSS, CST, and ADS for antenna modeling. She is adept in PCB designing using Multisim, Ultiboard, and EDWinXP software. Additionally, she possesses hands-on skills in Optical Instrumentation (e.g., Splicing, OTDR) and Surface Mount Technology (SMT), making her a versatile engineer and researcher capable of bridging simulation with practical implementation.

👩‍🏫 Teaching Experience

She has taught key undergraduate subjects including Digital Logic Design, Electronics Devices and Circuits, and RF and Microwave Engineering, demonstrating her ability to translate complex technical concepts into effective classroom instruction. Her teaching reflects both theoretical understanding and hands-on experience, enriching the learning process for her students.

🌟 Legacy and Future Contributions

As she continues her doctoral journey, Mrs. Bhushan’s goal is to contribute to academia and industry through innovative research, meaningful patents, and impactful teaching. Her work in dielectric resonator antenna design is set to influence future advancements in wireless communication and jamming systems, and her commitment to technical education ensures she will continue shaping future engineers and researchers.

📖Notable Publications

Design and implementation of reconfigurable communication and sensing antenna
Authors: Sushmita Bhushan, Rajveer Singh Yaduvanshi
Journal: AEU-International Journal of Electronics and Communications
Year: 2025

Design and Implementation of Rectangular Dielectric Resonator Antennas for GPS-Based Toll System
Authors: Mishti Gautam, Rajveer Yaduvanshi, Anup Kumar, Sushmita Bhushan, Saurabh Katiyar
Journal: MAPAN
Year: 2024

Design and Implementations of Pigeon’s Away Electronic System
Authors: Arjun Sharma, Rajveer Yaduvanshi, Anup Kumar, Harshul Jain, Sushmita Bhushan, Saurabh Katiyar, Amit Pandit
Journal: MAPAN
Year: 2023

2.4 GHz Wi-Fi jammer using cylindrical dielectric resonator antenna for prison applications
Authors: Sushmita Bhushan, Rajveer Singh Yaduvanshi
Journal: MAPAN
Year: 2023

Defected ground split ring resonator-based sensor for adulteration detection in fluids
Authors: Sushmita Bhushan, Sanjeev Kumar, Neeta Singh, Sachin Kumar
Journal: Wireless Personal Communications
Year: 2021

Munusamy Settu | Analytical Chemistry | Best Researcher Award

Dr. Munusamy Settu | Analytical Chemistry | Best Researcher Award

Chennai institute of technology, India.

Dr. S. Munusamy is a distinguished researcher and educator in the field of inorganic chemistry and nanomaterials. his academic journey began with a strong foundation in chemistry, leading to a Ph. d. from the university of madras, where he specialized in electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites. his professional career spans roles as an assistant researcher, head of the department, and currently as a research faculty member at the Centre for applied nanomaterials, Chennai institute of technology. his work focuses on nanomaterials, electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research.

Profile

Google Scholar

Early academic pursuits 🎓

His journey into the world of chemistry began with a strong foundation in the subject during his undergraduate studies at Thiruvalluvar university. with a keen interest in exploring the principles of chemistry, he pursued his M. Sc. in chemistry at the prestigious university of madras, where he gained expertise in analytical, inorganic, organic, and physical chemistry. his academic brilliance and dedication to scientific exploration led him to further his research aspirations through a Ph. d. in inorganic chemistry (material science) at the university of madras. his doctoral research focused on electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites under the guidance of Prof. V. Narayanan.

Professional endeavors 🏛️

following his academic achievements, Dr. Munusamy embarked on a dynamic professional career dedicated to research and education. he served as an assistant researcher and later as the head of the department at shishya arts and science college, thiruvalluvar university. his work in gallium nitride-polyaniline-polypyrrole hybrid nanocomposites showcased his expertise in nanomaterials and their applications in electrochemical sensors. in 2024, he joined the chennai institute of technology as a research faculty member at the centre for applied nanomaterials, where he continues to advance research in cutting-edge material science.

Contributions and research focus 🔬

His research is deeply rooted in the synthesis and application of nanomaterials, including metal nitrides, metal oxides, metal carbides, and conducting polymers. his work spans various critical domains, such as electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research. his innovative approaches to material synthesis and application have led to significant advancements in sustainable energy and environmental chemistry, particularly in developing efficient catalysts for energy storage and conversion.

Accolades and recognition 🏆

throughout his career, Dr. Munusamy has earned recognition for his pioneering research and contributions to the field of nanomaterials. his expertise in developing hybrid nanocomposites has been instrumental in enhancing electrochemical sensing technologies. his scholarly achievements have been acknowledged through academic honors, research publications, and invitations to participate in scientific forums, reflecting his standing in the global scientific community.

Impact and influence 🌍

His research has had a profound impact on both academia and industry. his work on electrocatalysts and photocatalysts has provided valuable insights into alternative energy solutions, contributing to the advancement of sustainable technologies. as a dedicated educator, he has mentored aspiring chemists, inspiring the next generation of scientists to push the boundaries of material science and nanotechnology. his leadership roles in academic institutions have further solidified his influence in shaping scientific curricula and fostering research-driven learning environments.

Legacy and future contributions 🔭

as a committed researcher and educator, Dr. Munusamy continues to explore new frontiers in nanomaterial science. his ongoing work at the chennai institute of technology aims to develop innovative materials with enhanced efficiency for energy storage and environmental applications. his legacy is marked by his relentless pursuit of knowledge and his dedication to scientific excellence. looking ahead, he envisions expanding his research into interdisciplinary collaborations, furthering the impact of nanomaterials in solving global challenges.

Publication

  • Doping of Co into V₂O₅ nanoparticles enhances photodegradation of methylene blue
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2014

 

  • MnWO₄ nanocapsules: synthesis, characterization and its electrochemical sensing property
    Authors: S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, …
    Year: 2015

 

  • Nanomolar determination of 4-nitrophenol based on a poly (methylene blue)-modified glassy carbon electrode
    Authors: K. Giribabu, R. Suresh, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2013

 

  • New electrochemical sensor based on Ni-doped V₂O₅ nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, S. Munusamy, …
    Year: 2014

 

  • Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties
    Authors: S. Munusamy, K. Bhakyaraj, L. Vijayalakshmi, A. Stephen, V. Narayanan
    Year: 2014

 

  • Simultaneous determination of paracetamol and 4-aminophenol based on poly (chromium Schiff base complex) modified electrode at nanomolar levels
    Authors: S.P. Kumar, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, …
    Year: 2016

 

  • Synthesis and characterization of chromium (III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol
    Authors: S.P. Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2015

 

  • A voltammetric biosensor based on poly (o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2018

 

  • Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property
    Authors: V. Sivakumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2014

 

  • Fabrication of neurotransmitter dopamine electrochemical sensor based on poly (o-anisidine)/CNTs nanocomposite
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2016