Gulsah Saydan Kanberoglu | Analytical Chemistry | Research Excellence Award

Assoc. Prof. Dr. Gulsah Saydan Kanberoglu | Analytical Chemistry | Research Excellence Award

Van Yuzuncu Yil University | Turkey

Assoc. Prof. Dr. Gulsah Saydan Kanberoğlu is an accomplished researcher in the fields of electrochemistry, potentiometric sensor technology, and analytical drug detection. Her scientific work focuses on developing innovative electrochemical sensing platforms, PVC-membrane potentiometric electrodes, metal–organic framework (MOF)-based sensors, and nanostructured materials for pharmaceutical, environmental, and biomedical applications. She has led and contributed to more than 20 funded research projects, covering areas such as molecularly imprinted polymer sensors, deep eutectic solvent-based microextraction, catalytic nanomaterials, and advanced MOF-supported nanoparticles for antibacterial, catalytic, and sensing applications. Dr. Kanberoğlu has an extensive publication record in SCI and Scopus-indexed journals, demonstrating her expertise in designing selective, sensitive, and stable sensors for analytes such as lidocaine, dopamine, imipramine, silver ions, rhodamine B, tamoxifen, and various pharmaceutical compounds. Her innovative work also includes electrochemical biosensors, nanostructured catalysts, hydrazine borane dehydrogenation, and environmentally relevant detection techniques. Her research contributions extend to the synthesis and characterization of functional nanomaterials, including ruthenium and silver nanoparticles, graphene oxide-supported catalysts, metal-organic frameworks, and hybrid electrochemical sensing composites. She has collaborated with multidisciplinary teams and supervised graduate research, contributing to advancements in both academic scholarship and practical analytical technologies. With strong citation indices in Web of Science and Scopus, Dr. Kanberoğlu continues to influence the field through impactful publications, active project leadership, and ongoing development of next-generation electrochemical sensors.

Profiles : Scopus | Google Scholar

Featured Publications

1. Khalilzadeh, B., Shadjou, N., Kanberoglu, G. S., Afsharan, H., De La Guardia, M., & others. (2018). Advances in nanomaterial-based optical biosensing and bioimaging of apoptosis via caspase-3 activity: A review. Microchimica Acta, 185(9), 434.

2. Kanberoglu, G. S., Yilmaz, E., & Soylak, M. (2019). Application of deep eutectic solvent in ultrasound-assisted emulsification microextraction of quercetin from some fruits and vegetables. Journal of Molecular Liquids, 279, 571–577.

3. Meral, R., Dogan, I. S., & Kanberoglu, G. S. (2012). Antioxidants as functional food ingredients. Journal of the Institute of Science and Technology, 2(2), 45–50.

4. Khalilzadeh, B., Rashidi, M., Soleimanian, A., Tajalli, H., Kanberoglu, G. S., & others. (2019). Development of a reliable microRNA-based electrochemical genosensor for monitoring of miR-146a, a key regulatory agent of neurodegenerative disease. International Journal of Biological Macromolecules, 134, 695–703.

5. Kanberoglu, G. S., Yilmaz, E., & Soylak, M. (2019). Developing a new and simple ultrasound-assisted emulsification liquid phase microextraction method built upon deep eutectic solvents for Patent Blue V in syrup and water samples. Microchemical Journal, 145, 813–818.

Shahryar Mooraj | Analytical Chemistry | Best Researcher Award

Dr. Shahryar Mooraj | Analytical Chemistry | Best Researcher Award

Lawrence Livermore National Lab | United States

Dr. Shahryar Mooraj is a distinguished Post-Doctoral Researcher at Lawrence Livermore National Laboratory (LLNL), renowned for his groundbreaking contributions to metal additive manufacturing (AM) and advanced materials science. With a Ph.D. in Mechanical Engineering from the University of Massachusetts Amherst, his research spans the development of next-generation materials and fabrication processes that integrate precision engineering, artificial intelligence, and materials design. Dr. Mooraj’s scientific achievements are characterized by innovation in high-entropy alloys (HEAs), refractory materials, and hierarchical nanoporous structures. His research in microstructure control and defect mitigation has provided new insights into the mechanical and thermal behaviors of additively manufactured metals. His work on high-performance refractory alloys contributes to the design of plasma-facing materials for fusion energy systems, while his digital twin models enhance automation and defect prediction in manufacturing processes through AI integration. Notably, Dr. Mooraj developed a custom droplet-on-demand molten metal jetting system for boutique powder synthesis and created a rapid, cost-efficient platform for liquid metal wetting analysis, revolutionizing materials compatibility screening for AM. His investigations into hierarchical 3D architectures fabricated via direct ink writing (DIW) have also expanded the frontier of energy storage and electrocatalytic materials. His collaborations with leading global institutions including A*STAR (Singapore), Max Planck Institute (Germany), and ORNL (USA) underscore his role in advancing interdisciplinary materials research and fostering international scientific innovation. With 381 citations across 355 documents, 17 publications, and an h-index of 11 (Scopus), Dr. Mooraj’s scholarly impact reflects his sustained research excellence and leadership in additive manufacturing and material innovation. His forward-looking vision aims to establish sustainable, AI-driven, and defect-free manufacturing paradigms, aligning with global priorities in advanced materials design and next-generation engineering technologies.

Profiles : Scopus | ORCID | Google Scholar 

Featured Publications

Mooraj, S., Feng, S., Luebbe, M., Register, M., Liu, J., Li, T., Yavas, B., Schmidt, D. P., et al. (2025). Martensitic transformation induced strength-ductility synergy in additively manufactured maraging 250 steel by thermal history engineering. Journal of Materials Science & Technology, 211, 212–225.

Mooraj, S., Fu, J., Feng, S., Ng, A. K., Duoss, E. B., Baker, S. E., Zhu, C., Detsi, E., et al. (2024). Additive manufacturing of multiscale NiFeMn multi-principal element alloys with tailored composition. Materials Futures, 3(4), 045103.

Mooraj, S., Dong, X., Zhang, S., Zhang, Y., Ren, J., Guan, S., Li, C., Naorem, R., et al. (2024). Crack mitigation in additively manufactured AlCrFe₂Ni₂ high-entropy alloys through engineering phase transformation pathway. Communications Materials, 5(1), 101.

Mooraj, S., Kim, G., Fan, X., Samuha, S., Xie, Y., Li, T., Tiley, J. S., Chen, Y., Yu, D., et al. (2024). Additive manufacturing of defect-free TiZrNbTa refractory high-entropy alloy with enhanced elastic isotropy via in-situ alloying of elemental powders. Communications Materials, 5(1), 14.

Zhang, S., Hou, P., Kang, J., Li, T., Mooraj, S., Ren, Y., Chen, C. H., Hart, A. J., et al. (2023). Laser additive manufacturing for infrastructure repair: A case study of a deteriorated steel bridge beam. Journal of Materials Science & Technology, 154, 149–158.

Jing Chen | Analytical Chemistry | Outstanding Scientist Award

Prof. Jing Chen | Analytical Chemistry | Outstanding Scientist Award

National Natural Science Foundation of China, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Jing Chen began his academic journey with a strong commitment to scientific excellence in the fields of life and environmental analysis. From the outset, he displayed a deep interest in applying multidisciplinary theories and methodologies to address real-world analytical challenges. This early foundation equipped him to transition seamlessly from theoretical concepts to practical applications, setting the stage for a stable and impactful research trajectory.

👨‍🔬 Professional Endeavors

Prof. Chen currently holds a distinguished position at the National Natural Science Foundation of China, where he leads pioneering research at both national and provincial levels. Over the years, he has directed numerous high-impact projects, including those funded by the Gansu Provincial Science Foundation. His professional efforts have focused not only on scientific innovation but also on cultivating research that supports regional development goals, particularly in environmental sustainability.

🔬 Research Focus and Innovations

Prof. Chen’s core research areas encompass electrochemistry, electroanalytical chemistry, and computational chemistry. His most innovative contributions involve the development of electrochemical sensors and biosensors, using advanced materials such as MXenes and bioactive porphyrins. These innovations have enabled the highly selective and efficient detection of life-active molecules and environmental pollutants, providing robust tools for water quality assessment and ecological monitoring.

💡 Key Contributions

Prof. Chen has made transformative contributions to the detection and monitoring of pollutants by integrating smart material science with sensor design. His work offers practical solutions for ecological conservation, public health, and environmental policymaking. His major funded research projects include: National Natural Science Foundation of China (22374121) – ongoing; Key Project of Natural Science Foundation of Gansu Province (22JR5RA132); Key R&D Project, Gansu Province (18YF1GA050); and NSFC Project on Bioelectrochemical Detection Methods (21565022). These projects underscore his leadership in national priority areas such as environmental protection, bioanalysis, and advanced sensor technology.

🌍 Impact and Influence

Prof. Chen’s work has had a direct and lasting impact on ecological research, public safety, and green chemistry initiatives. His sensor technologies have been adapted for regional water quality monitoring, aligning with broader environmental goals of the province. His efforts contribute to ecological civilization construction and the economic development of Western China, reinforcing the societal relevance of scientific research.

📚 Academic Citations and Recognition

His scientific outputs have earned recognition in top-tier journals, with frequent citations reflecting the relevance and utility of his research. His MXene-based and porphyrin-functionalized platforms have become reference points in the study of next-generation biosensors, bioanalytical chemistry, and nanomaterial applications.

🧪 Technical Skills and Expertise

Prof. Chen possesses advanced technical proficiency in electrochemical analysis, sensor development, nanomaterial synthesis, and computational modeling. His skill in bridging theoretical design with laboratory experimentation allows for rapid innovation in sensor technology, with enhanced accuracy and environmental relevance.

👨‍🏫 Teaching and Mentorship

As an educator, Prof. Chen has demonstrated a consistent passion for mentoring emerging scientists, providing guidance in both theoretical understanding and experimental technique. His teaching philosophy emphasizes interdisciplinary research, encouraging students to address real-world problems through innovation and collaboration.

🌟 Legacy and Future Contributions

Looking forward, Prof. Jing Chen aims to further advance the field of environmental sensing and analytical chemistry by developing next-gen biosensors powered by smart materials and AI-assisted analytical platforms. His long-term vision includes not only scientific breakthroughs but also the training of future leaders in chemistry and environmental sciences. His legacy will be defined by innovative research, institutional leadership, and a sustained commitment to solving global environmental challenges.

📖Notable Publications

Electrochemiluminescence sensor based on upconversion nanoparticles and Zr-based porphyrinic metal-organic frameworks with recognition sites for mercaptan detection

  • Journal: Talanta

  • Year: 2025

Ratiometric Electrochemical DNAzyme Biosensor for Sensitive Detection of Salmonella in Urban Water Source

  • Journal: Environmental Science and Technology

  • Year: 2025

Ratio Fluorescence Detection of Salicylic Acid Based on Ti₃C₂ Quantum Dots

  • Journal: ACS Applied Nano Materials

  • Year: 2025

Rapid detection and differentiation of chlortetracycline and tetracycline by N,P-Ti₃C₂ QDs

  • Journal: Microchemical Journal

  • Year: 2024

L-Lysine-Functionalized Nickel-Zinc Bis(Dithiolene) Metal-Organic Framework for Electrochemical Chiral Recognition of Tryptophan Enantiomers

  • Journal: Chemistry of Materials

  • Year: 2024

CoFe₂O₄ nanocubes derived by Prussian Blue analogs for detecting dopamine

  • Journal: Microchemical Journal

  • Year: 2024

Multiwalled carbon nanotubes modified with nickel-zinc bis(dithiolene) metal-organic frameworks for electrochemical detection of 5-hydroxytryptamine

  • Journal: Journal of Electroanalytical Chemistry

  • Year: 2023

Photoanode with enhanced performance achieved by a novel charge modulation strategy without sacrificial agents

  • Journal: Journal of Electroanalytical Chemistry

  • Year: 2023