Muthuraj Arunpandian | Catalysis | Excellence in Research Award

Dr. Muthuraj Arunpandian | Catalysis | Excellence in Research Award

Yeungnam University, India

👨‍🎓Profiles

👨‍🔬 Early Academic Pursuits

Dr. Muthuraj Arunpandian began his academic journey in Tamil Nadu, India, earning his Bachelor’s and Master’s degrees from Madurai Kamaraj University. He further pursued doctoral studies at Kalasalingam Academy of Research and Education, Krishnankoil, where he specialized in nanomaterials and catalysis. His academic training laid the foundation for his focused research in photocatalysis and electrocatalysis, aiming at environmental and energy-related solutions.

🌐 Professional Endeavors

Since 2023, Dr. Arunpandian has been serving as an International Research Professor at the School of Chemical Engineering, Yeungnam University, South Korea. In this role, he leads cutting-edge research in the field of catalysis, collaborating internationally to address challenges in sustainable energy and environmental remediation. His work bridges material science and chemical engineering, emphasizing interdisciplinary solutions.

🔬 Research Contributions and Focus

Dr. Arunpandian’s research is primarily focused on two interconnected areas: photocatalysis and electrocatalysis.

  • In photocatalysis, his group develops visible-light-driven semiconductor nanostructures for environmental cleanup and solar hydrogen production. Their innovations in doping strategies, heterojunction design, and surface modifications have dramatically enhanced charge carrier separation, light absorption, and overall catalytic efficiency.

  • In electrocatalysis, he pioneers low-cost, high-efficiency electrocatalysts for water splitting. His work on transition metal-based materials and single-atom catalysts has produced systems with low overpotentials, high current densities, and outstanding durability, offering scalable paths toward clean hydrogen production.

📈 Impact and Influence

Dr. Arunpandian has published over 75 research and review articles in reputed national and international journals, garnering more than 1,200 citations to date. In addition to these publications, he has contributed 2 book chapters, underlining his scholarly productivity and domain authority. His research is widely cited in areas related to green chemistry, renewable energy, and environmental remediation, reflecting its global significance.

🧪 Technical Skills and Innovations

His core technical competencies include:

  • Nanomaterial synthesis (e.g., doped semiconductors, metal-based nanostructures)

  • Photocatalytic degradation systems for pollutant removal

  • HER/OER performance optimization through material design

  • Surface/interface engineering, heterojunction fabrication, and bandgap tuning
    These skills allow him to engineer materials that are both high-performing and scalable for real-world energy and environmental applications.

🎓 Teaching and Mentorship

As an International Research Professor, Dr. Arunpandian actively contributes to academic mentoring and international research training, guiding graduate students and postdoctoral researchers in the synthesis and characterization of nanomaterials. His cross-cultural mentorship fosters innovation and scientific communication at a global scale.

🌱 Legacy and Future Directions

Dr. Arunpandian’s research contributes directly to the United Nations Sustainable Development Goals, particularly in clean energy and environmental sustainability. His future endeavors will likely focus on integrating AI-based catalyst design, scalable synthesis methods, and industry partnerships for real-world deployment. His vision is to accelerate the transition to clean hydrogen economies and pollutant-free ecosystems, leaving a lasting scientific and societal impact.

📖Notable Publications

A rational design of novel Z-scheme N-rich g-C₃N₅ supported Ag₂WO₄/BiVO₄ ternary heterojunction for remarkably enhanced visible-light-driven photocatalytic activity of acebutolol antibiotic: Performance, mechanism insight and fragments pathway analysis
Authors: Muthuraj Arunpandian, Tae Hwan Oh, Karuppaiah Selvakumar
Journal: Journal of Alloys and Compounds
Year: 2025

Exceptional Visible-Light-Driven Photodegradation Performance Over N-Rich g-C₃N₅ Decorated Flower-like SrMoO₄ Nanohybrids: Analysis of Mechanism, Efficacy and Degradation Pathway
Authors: Muralidharan S., Arunpandian M., Nagarajan E. R., Oh Tae Hwan, Selvakumar K.
Journal: Journal of Inorganic and Organometallic Polymers and Materials
Year: 2025

Fabrication of dopamine/TiO₂ nanocomposite hydrogel using fenugreek gum for efficient photocatalytic degradation of organic pollutants under visible light irradiation
Authors: Nagaraja Kasula, Arunpandian Muthuraj, Oh Tae Hwan
Journal: Journal of Industrial and Engineering Chemistry
Year: 2025

Green synthesis of Zinc Sulfide doped Ag-Zn₃(PO₄)₂ nanocomposite using bael gum: Enhanced visible-light driven photocatalytic degradation of ciprofloxacin and trypan blue with potential antimicrobial and assessment
Authors: Nagaraja Kasula, Boya Mallika, Arunpandian Muthuraj, Oh Tae Hwan
Journal: Inorganic Chemistry Communications
Year: 2025

Nitrogen-Doped Hollow Carbon Spheres-Decorated Co₂SnO₄/WS₂ Heterostructures with Improved Visible-Light Photocatalytic Degradation of Organic Dye
Authors: Muthuraj Arunpandian, Tae Hwan Oh
Journal: Molecules
Year: 2025

A facile green synthesis of manganese oxide nanoparticles using gum karaya polymer as a bioreductant for efficient photocatalytic degradation of organic dyes and antibacterial activity
Authors: Nagaraja Kasula, Muthuraj Arunpandian, Oh Tae Hwan
Journal: International Journal of Biological Macromolecules
Year: 2024

 

Ruby Raj Michael | Organic Chemistry | Best Researcher Award

Dr. Ruby Raj Michael | Organic Chemistry | Best Researcher Award

Yeungnam University, Republic of Korea, India

👨‍🎓Profiles

🎯 Objective

Dr. Ruby Raj Michael is a passionate and innovative researcher with expertise in organic chemistry, polymer chemistry, materials science, and chemical engineering. She is dedicated to pioneering cutting-edge research in energy storage materials, organic electronic materials, and polymer-based solar cells at prestigious research institutions and universities worldwide.

🎓 Academic Background

Dr. Ruby Raj Michael has a strong academic foundation in chemistry and materials science, with the following degrees:

✔️ Ph.D. in Chemistry (Materials Chemistry) (2008-2013) – National Institute of Technology, Tiruchirappalli, India.
🔹 Thesis: Design and Synthesis of Organic Polymers-Based Solar Cells
🔹 Supervisor: Prof. Dr. S. Anandan

✔️ M.Sc. in General Chemistry (2003-2005) – St. Joseph’s College (Autonomous), India.
✔️ B.Sc. in General Chemistry (2000-2003) – St. Joseph’s College (Autonomous), India.

🔬 Research Expertise & Interests

Dr. Michael specializes in designing and synthesizing novel materials for energy storage, organic electronics, and polymer chemistry, with research interests including:

✅ Energy Storage Materials & Batteries 🔋
✔️ Silicon-Encapsulated ZIF-67-Based Hollow Carbon Nanocubic Composites for Lithium-ion batteries.
✔️ Spinel Lithium Titanate (LTO) & Copper Cobalt Carbonate Hydroxide (CuCo CH) for advanced battery anodes.
✔️ Metal/Covalent Organic Frameworks (MOFs/COFs) for Lithium/Sodium/Potassium-ion batteries.
✔️ Organic Cathode Materials (Perylenediimide-based Polyimides & Redox-Active Macrocyclic Molecules) for Rechargeable Aluminum-ion Batteries.
✔️ Organic Polymer-Based Electrolytes for Lithium Organic Batteries.

✅ Organic Electronic Materials ⚡
✔️ Design and synthesis of small molecules & conjugated polymers for solar cells, perovskite solar cells, and polymer field-effect transistors (FETs).
✔️ Development of hole-transporting materials for next-generation organic electronic devices.

✅ Key Molecular Design Keywords:
🔹 Benzodithiophene (BDT), Thienyl-Substituted BDT (BDTT), Spiro[fluorene-9,9’-xanthene]-based 3D Oligomers, Thienoisoindigo Units.

📚 Academic Impact & Publications

Dr. Michael’s research has led to multiple high-impact SCI publications, contributing to the advancement of energy storage and organic electronics. Her work is widely cited, reflecting its influence in materials chemistry and polymer research.

🛠️ Technical Skills & Expertise

Dr. Michael has expertise in:
✔️ Organic & Polymer Synthesis – Development of functional materials for energy and electronic applications.
✔️ Electrochemical Characterization – Battery performance analysis, cyclic voltammetry, electrochemical impedance spectroscopy.
✔️ Materials Characterization – X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy.
✔️ Device Fabrication & Testing – Polymer solar cells, perovskite solar cells, lithium-ion battery assembly.

🎓 Teaching & Mentorship

As a dedicated mentor and educator, Dr. Michael has guided students in organic chemistry, polymer science, and materials engineering, fostering the next generation of researchers in sustainable energy materials.

🌍 Future Research Vision

Dr. Michael’s research vision focuses on:
🔹 Developing next-generation energy storage materials for high-performance and sustainable batteries.
🔹 Innovating organic electronic materials for efficient and cost-effective solar cells.
🔹 Exploring hybrid polymer frameworks for multifunctional applications in energy and electronics.

📖Notable Publications

  • Fabrication of high-efficiency perovskite solar cells using benzodithiophene-based random copolymeric hole transport material

    • Authors: Vijay Srinivasan Murugesan, Michael Ruby Raj, Hock Beng Lee, Neetesh Kumar
    • Journal: Electrochimica Acta
    • Year: 2025
  • Recent Advances in Development of Organic Battery Materials for Monovalent and Multivalent Metal-Ion Rechargeable Batteries

    • Authors: Michael Ruby Raj, Gibaek Lee, Mogalahalli Venkatashamy Reddy, Karim Zaghib
    • Journal: ACS Applied Energy Materials
    • Year: 2024
  • Extraordinary Ultrahigh‐Capacity and Long Cycle Life Lithium‐Ion Batteries Enabled by Graphitic Carbon Nitride‐Perylene Polyimide Composites

    • Authors: Michael Ruby Raj, Jungwon Yun, Dong‐kyu Son, Gibaek Lee
    • Journal: Energy & Environmental Materials
    • Year: 2023
  • Oxygen vacancy-modulated zeolitic Li₄Ti₅O₁₂ microsphere anode for superior lithium-ion battery

    • Authors: Seohyeon Yeo, Michael Ruby Raj, Gibaek Lee
    • Journal: Electrochimica Acta
    • Year: 2023
  • Hollow Porous N and Co Dual-Doped Silicon@Carbon Nanocube Derived by ZnCo-Bimetallic Metal–Organic Framework toward Advanced Lithium-Ion Battery Anodes

    • Authors: Hongjung Kim, Jinhyuk Baek, Dong-Kyu Son, Michael Ruby Raj, Gibaek Lee
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2022