Wolfgang Quapp | Theoretical Chemistry | Best Researcher Award

Dr. Wolfgang Quapp | Theoretical Chemistry | Best Researcher Award

Leipzig University, Germany

👨‍🎓Profiles

🎓 Early Academic Pursuits

He was born on August 23, 1947, in Waltersdorf near Greiz in Thüringen, Germany. His academic journey began in 1966 at the Universität Leipzig, where he pursued a rigorous course in mathematics, culminating in 1973. His doctoral work, completed in 1982, focused on the singular initial value problem of the Euler-Poisson-Darboux equation, investigating the continuity of solution operators and their mathematical properties—a topic reflecting a deep engagement with applied mathematical physics.

🧪 Professional Endeavors

Dr. Quapp’s professional career spanned nearly four decades at Universität Leipzig, where he served from 1973 until his retirement in 2012. Despite a temporary hiatus due to an 18-month military service between 1973 and 1975, he remained an integral figure in Leipzig’s academic and research landscape. His career included international academic collaborations, including guest positions at prestigious institutions such as VIK Dubna near Moscow and the University of Leningrad under Prof. Dr. A.A. Kiselev, as well as with Prof. Dr. M. Winnewisser in Gießen.

🔬 Contributions and Research Focus

Dr. Quapp’s research is renowned for bridging mathematics and theoretical chemistry. His work delves into mathematical methods in theoretical chemistry, quantum chemistry, and molecular physics. A significant focus has been the analysis of potential energy surfaces, valley-ridge inflection points, and reaction path bifurcations—critical to understanding molecular mechanisms and chemical reactions. Since 2010, he has collaborated extensively with Prof. Dr. J.M. Bofill in Barcelona, contributing to the intersection of chemical reaction theory and differential geometry.

🌍 Impact and Influence

By 2024, Dr. Quapp had authored over 120 scientific publications, presented 75 talks or posters, and conducted 190 peer reviews for 70 esteemed journals, underlining his influence as both a thought leader and a dedicated academic community contributor. His insights have shaped modern understanding in computational chemistry and mathematical modeling of complex chemical systems.

📚 Academic Cites and Recognition

Dr. Quapp is a respected member of several scholarly bodies, including the Leibniz-Sozietät Berlin, the Deutsche Mathematiker-Vereinigung, the Deutsche Bunsengesellschaft für Physikalische Chemie, and the Ostwald-Gesellschaft. These memberships reflect his stature in both the mathematical and physical chemistry communities. His works are widely cited, and his academic website catalogues his prolific output: List of Activities.

🧰 Technical Skills

Possessing strong analytical and computational skills, Dr. Quapp has contributed to solving nonlinear partial differential equations, the geometric theory of dynamical systems, and computational modeling in chemistry. His ability to apply high-level mathematical techniques to chemical problems highlights his interdisciplinary mastery.

👨‍🏫 Teaching Experience

During his tenure at Universität Leipzig, Dr. Quapp was not only a researcher but also a mentor and educator, guiding generations of students in the complex interplay between mathematics and chemistry. His teaching helped bridge disciplinary boundaries and inspire future scholars to pursue rigorous theoretical investigations.

🏆 Legacy and Future Contributions

Though formally retired since 2012, Dr. Quapp continues to collaborate internationally and publish influential work. His legacy is one of cross-disciplinary innovation, scholarly rigor, and mentorship. His ongoing collaboration with researchers like Prof. Bofill ensures that his work will continue to influence the fields of quantum chemistry and mathematical modeling for years to come.

📖Notable Publications

Comment to: “Topology of molecular deformations induces triphasic catch bonding in selectin–ligand bonds”
Authors: W Quapp, J.M. Bofill
Journal: bioRxiv, Preprint ID 2024.08.21.608529
Year: 2024

Shaping Reactions: The Exciting World of Mechanochemistry and Molecular Interactions
Authors: W Quapp, J.M. Bofill
Year: 2024

Altering Selectivity in the Tug-of-War Mechanism by Mechanochemistry – with an Explanation of Catch Bond Behavior
Authors: W Quapp, J.M. Bofill
Journal: Foundations, Volume 1, Pages 1–26
Year: 2023

An algorithm to find the optimal oriented external electrostatic field for annihilating a reaction barrier in a polarizable molecular system
Authors: J.M. Bofill i Villà, M. Severi, W. Quapp, J. Ribas Ariño, I.P.R. Moreira, and others
Journal: Journal of Chemical Physics, Volume 159, Pages 1–19
Year: 2023

Pengfei Li | Theoretical Chemistry | Best Researcher Award -1929

Prof. Pengfei Li | Theoretical Chemistry | Best Researcher Award

Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Pengfei Li’s journey in scientific research has been deeply rooted in environmental physics and remote sensing. His passion for atmospheric studies and hyperspectral technologies developed during his formative academic years, where he excelled in blending physical science with environmental applications. His academic path ultimately led him to become a key researcher at the prestigious State Key Laboratory of Infrared Physics under the Shanghai Institute of Technical Physics, part of the Chinese Academy of Sciences.

🧑‍💼 Professional Endeavors

Currently, as a Research Fellow, Prof. Li is a leading figure in satellite-based atmospheric monitoring. His role includes spearheading research on weak gas emissions detection, a crucial area for tackling global issues like climate change and environmental pollution. His leadership in the lab is marked by interdisciplinary integration, where hyperspectral satellite technology, data assimilation, atmospheric modeling, and artificial intelligence (AI) converge to address modern environmental challenges.

🔬 Contributions and Research Focus

Prof. Li’s research is at the intersection of hyperspectral remote sensing and AI-driven environmental monitoring. His team is developing next-generation techniques for satellite-based detection of weak gas emissions, aimed at pushing the detection limits in extreme environments. This work also involves defining payload specifications for future hyperspectral satellites. The outcomes of his research hold significant relevance for addressing atmospheric pollution, climate change, and homeland security threats, providing critical insights into satellite system design and operational strategies.

🌍 Impact and Influence

With over 50 SCI-indexed publications, including 20+ first-author or corresponding-author papers in leading journals such as PNAS and One Earth, Prof. Li has made a global impact. His research has informed both the academic community and policymakers, particularly in the realms of climate change mitigation, environmental monitoring, and satellite payload engineering. His work is frequently showcased at international conferences like the United Nations Climate Change Conference, AMS Annual Meeting, and the Goldschmidt Conference, where he has delivered numerous invited talks.

🏆 Honors and Leadership Roles

Prof. Li was selected for the prestigious Chinese Academy of Sciences “Hundred Talents Program” (Category B), recognizing his innovative research and leadership potential. Beyond research, he plays a pivotal role as a review expert for China’s National Key R&D Program and serves on scientific committees, including as the Deputy Secretary-General of the Hyperspectral Remote Sensing Technology and Application Professional Committee under the China Association for Remote Sensing Applications.

📚 Academic Citations

Prof. Li’s publications are highly cited within the fields of environmental monitoring, satellite remote sensing, and atmospheric sciences, reflecting the value and influence of his contributions on an international scale. His research continues to shape the discourse around climate resilience, pollution tracking, and advanced remote sensing methods.

🛠️ Technical Skills

His technical expertise includes:  Hyperspectral satellite data processing, Atmospheric modeling and data assimilation, AI and machine learning for environmental monitoring, Payload design and specification for next-generation satellites, Quantitative remote sensing and geospatial analysis.

👨‍🏫 Teaching & Mentoring

In addition to research, Prof. Li is actively involved in mentoring graduate students and early-career scientists, fostering a culture of innovation and collaboration in hyperspectral remote sensing. His guidance has produced a growing cadre of young scientists contributing to China’s leadership in satellite-based environmental science.

🚀 Vision and Future Contributions

Prof. Li’s future goals include expanding the applications of hyperspectral technologies to global-scale monitoring of greenhouse gases and pollutants, developing real-time AI-driven detection frameworks, and enhancing China’s position in next-gen satellite missions. His work is set to continue making a transformative impact on how we monitor and respond to environmental and security-related atmospheric events.

📖Notable Publications

The effectiveness of solar radiation management using fine sea spray across multiple climatic regions
Authors: Z Song, S Yu, P Li, N Yao, L Chen, Y Sun, B Jiang, D Rosenfeld
Journal: Atmospheric Chemistry and Physics
Year: 2025

Photostationary state assumption seriously underestimates NOx emissions near large point sources at 10 to 60 m pixel resolution
Authors: L Chen, Z Song, N Yao, H Xi, J Li, P Gao, Y Chen, H Su, Y Sun, B Jiang, …
Journal: Proceedings of the National Academy of Sciences
Year: 2025

Multi-task deep learning for quantifying methane emissions from 2-D plume imagery with Low Signal-to-Noise Ratio
Authors: Q Xu, X Gu, P Li, X Gu
Journal: International Journal of Remote Sensing
Year: 2024

Less anthropogenic aerosol indirect effects are a potential cause for Northeast Pacific warm blob events
Authors: N Yao, Z Song, L Chen, Y Sun, B Jiang, P Li, J Chen, S Yu
Journal: Proceedings of the National Academy of Sciences
Year: 2024

Different contributions of meteorological conditions and emission reductions to the ozone pollution during Shanghai’s COVID-19 lockdowns in winter and spring
Authors: X Dou, M Li, Y Jiang, Z Song, P Li, S Yu
Journal: Atmospheric Pollution Research
Year: 2024

Jeremie Zaffran | Theoretical Chemistry | Best Researcher Award

Prof. Dr. Jeremie Zaffran | Theoretical Chemistry | Best Researcher Award

Professor at CNRS- (Centre National de la Recherche Scientifique),  France

Profile

🌟 Early Academic Pursuits

Jeremie Zaffran’s academic journey began with distinction, marked by a Bachelor’s degree in Chemistry from Université Paris Diderot-Paris 7, where he graduated cum laude and ranked among the top of his class. He continued his studies with a Master of Science in Materials Science, specializing in Nanosciences, where his exceptional performance earned him a summa cum laude distinction. His doctoral studies at the Ecole Normale Supérieure de Lyon solidified his expertise, culminating in a PhD in Chemistry awarded with the highest distinction. His thesis laid the groundwork for fast predictions of catalytic reactivity in biomass valorization, merging quantum calculations with statistical analysis.

🧑‍🔬 Professional Endeavors

Jeremie’s professional path reflects a global and multidisciplinary perspective. Starting with his postdoctoral fellowship at the Technion in Israel, he delved into computational design for solar water-splitting catalysts, forging collaborations with experimentalists worldwide. As a Research Assistant Professor at ShanghaiTech University, he expanded his expertise in computational catalysis, designing electrocatalysts for renewable energy applications. Currently, as a tenured research fellow at CNRS and part of the E2P2L lab in Shanghai, he focuses on integrating machine learning with computational chemistry to accelerate catalyst design for sustainable industrial processes.

🏗️ Contributions and Research Focus

Jeremie’s contributions span heterogeneous catalysis modeling, renewable energy applications, and advanced computational techniques like DFT and microkinetic simulations. His projects address critical challenges in biomass transformation, solar water splitting, and CO₂ valorization. He has developed machine learning models to predict catalytic activity and mechanisms, reducing the need for exhaustive computational resources. Jeremie’s interdisciplinary approach bridges theoretical insights and practical applications, resulting in innovative solutions for green chemistry.

🏆 Accolades and Recognition

Jeremie’s work has been recognized through numerous awards and honors, such as the prestigious Lady Davis Fellowship and the Grand Technion Energy Program Fellowship. His academic excellence is underscored by distinctions at every level of his education. Furthermore, his leadership in securing competitive grants has brought substantial funding to projects focused on sustainable chemistry, totaling millions in financial support.

🌍 Impact and Influence

Through collaborations with experimental and theoretical groups, Jeremie has shaped the landscape of computational catalysis. His research has influenced industrial partners, such as Solvay, and academic communities alike. With a robust portfolio of high-impact publications, he has contributed to fields ranging from photocatalytic hydrogen production to CO₂ utilization. His leadership in combining artificial intelligence with chemical research positions him as a pioneer in the digital transformation of catalysis.

🔮 Legacy and Future Contributions

Jeremie’s work continues to inspire innovation in green chemistry. By mentoring the next generation of scientists and fostering interdisciplinary collaborations, he is laying the groundwork for a sustainable future. His legacy includes not only his scientific advancements but also his commitment to bridging academic and industrial research, ensuring that his contributions endure for decades to come.

Publication Top Notes

  • “Unveiling the phenol direct carboxylation reaction mechanism at ZrO2 surface”

    • Authors: Kaihua Zhang, Changru Ma, Sebastien Paul, Jeremie Zaffran*
    • Journal: Molecular Catalysis
    • Year: 2024
  • “Photocatalytic dihydroxylation of light olefins to glycols by water”

    • Authors: Chunyang Dong, Yinghao Wang, Ziqi Deng, et al., Jeremie Zaffran, Andrei Y. Khodakov*, Vitaly V. Ordomsky*
    • Journal: Nature Communications
    • Year: 2024
  • “Upgrading the density functional theory with machine learning for the fast prediction of polyaromatic reactivity at bimetallic catalysts”

    • Authors: Jérémie Zaffran*, Minyang Jiao, Raphaël Wischert, Stéphane Streiff, Sébastien Paul
    • Journal: The Journal of Physical Chemistry C
    • Year: 2024
  • “Deoxydehydration of glycerol to allyl alcohol catalyzed by ceria-supported rhenium oxide”

    • Authors: Karen Silva Vargas, Marcia Araque, Jeremie Zaffran, Benjamin Katryniok*, Masahiro Sadakane*
    • Journal: Molecular Catalysis
    • Year: 2023
  • “Direct Photocatalytic Synthesis of Acetic Acid from Methane and CO at Ambient Temperature using Water as Oxidant”

    • Authors: Chunyang Dong, Maya Marinova, Karima Ben Tayeb, et al., Jeremie Zaffran, Andrei Y. Khodakov*, Vitaly V. Ordomsky*
    • Journal: The Journal of the American Chemical Society
    • Year: 2023
  • “Identifying Metal-Halogen bonding for Hydrogen Induced Acid Generation in Bifunctional Catalysis”

    • Authors: Yong Zhou, Martine Trentesaux, Jean-Charles Morin, et al., Jérémie Zaffran*, Vitaly Ordomsky*
    • Journal: ACS Catalysis
    • Year: 2023
  • “Catalytic selective oxidation of isobutane in a decoupled redox-process”

    • Authors: Li Zhang, Jeremie Zaffran, Franck Dumeignil, Sébastien Paul*, Axel Lofberg, Benjamin Katryniok*
    • Journal: Applied Catalysis A: General
    • Year: 2022
  • “Theoretical Insights into the Formation Mechanism of Methane, Ethylene, and Methanol in Fischer-Tropsch Synthesis at Co2C Surfaces”

    • Authors: Jeremie Zaffran*, Bo Yang*
    • Journal: ChemCatChem
    • Year: 2021
  • “First-Principles-Based Microkinetic Simulations of CO2 Hydrogenation to Methanol over Intermetallic GaPd2”

    • Authors: Panpan Wu, Jeremie Zaffran, Bo Yang*
    • Journal: The Journal of Physical Chemistry C
    • Year: 2020
  • “Fast Prediction of Oxygen Reduction Reaction Activity on Carbon Nanotubes with a Localized Geometric Descriptor”

    • Authors: Kunran Yang†, Jeremie Zaffran†, Bo Yang*
    • Journal: Physical Chemistry Chemical Physics
    • Year: 2020