Pengfei Li | Theoretical Chemistry | Best Researcher Award -1929

Prof. Pengfei Li | Theoretical Chemistry | Best Researcher Award

Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Pengfei Li’s journey in scientific research has been deeply rooted in environmental physics and remote sensing. His passion for atmospheric studies and hyperspectral technologies developed during his formative academic years, where he excelled in blending physical science with environmental applications. His academic path ultimately led him to become a key researcher at the prestigious State Key Laboratory of Infrared Physics under the Shanghai Institute of Technical Physics, part of the Chinese Academy of Sciences.

🧑‍💼 Professional Endeavors

Currently, as a Research Fellow, Prof. Li is a leading figure in satellite-based atmospheric monitoring. His role includes spearheading research on weak gas emissions detection, a crucial area for tackling global issues like climate change and environmental pollution. His leadership in the lab is marked by interdisciplinary integration, where hyperspectral satellite technology, data assimilation, atmospheric modeling, and artificial intelligence (AI) converge to address modern environmental challenges.

🔬 Contributions and Research Focus

Prof. Li’s research is at the intersection of hyperspectral remote sensing and AI-driven environmental monitoring. His team is developing next-generation techniques for satellite-based detection of weak gas emissions, aimed at pushing the detection limits in extreme environments. This work also involves defining payload specifications for future hyperspectral satellites. The outcomes of his research hold significant relevance for addressing atmospheric pollution, climate change, and homeland security threats, providing critical insights into satellite system design and operational strategies.

🌍 Impact and Influence

With over 50 SCI-indexed publications, including 20+ first-author or corresponding-author papers in leading journals such as PNAS and One Earth, Prof. Li has made a global impact. His research has informed both the academic community and policymakers, particularly in the realms of climate change mitigation, environmental monitoring, and satellite payload engineering. His work is frequently showcased at international conferences like the United Nations Climate Change Conference, AMS Annual Meeting, and the Goldschmidt Conference, where he has delivered numerous invited talks.

🏆 Honors and Leadership Roles

Prof. Li was selected for the prestigious Chinese Academy of Sciences “Hundred Talents Program” (Category B), recognizing his innovative research and leadership potential. Beyond research, he plays a pivotal role as a review expert for China’s National Key R&D Program and serves on scientific committees, including as the Deputy Secretary-General of the Hyperspectral Remote Sensing Technology and Application Professional Committee under the China Association for Remote Sensing Applications.

📚 Academic Citations

Prof. Li’s publications are highly cited within the fields of environmental monitoring, satellite remote sensing, and atmospheric sciences, reflecting the value and influence of his contributions on an international scale. His research continues to shape the discourse around climate resilience, pollution tracking, and advanced remote sensing methods.

🛠️ Technical Skills

His technical expertise includes:  Hyperspectral satellite data processing, Atmospheric modeling and data assimilation, AI and machine learning for environmental monitoring, Payload design and specification for next-generation satellites, Quantitative remote sensing and geospatial analysis.

👨‍🏫 Teaching & Mentoring

In addition to research, Prof. Li is actively involved in mentoring graduate students and early-career scientists, fostering a culture of innovation and collaboration in hyperspectral remote sensing. His guidance has produced a growing cadre of young scientists contributing to China’s leadership in satellite-based environmental science.

🚀 Vision and Future Contributions

Prof. Li’s future goals include expanding the applications of hyperspectral technologies to global-scale monitoring of greenhouse gases and pollutants, developing real-time AI-driven detection frameworks, and enhancing China’s position in next-gen satellite missions. His work is set to continue making a transformative impact on how we monitor and respond to environmental and security-related atmospheric events.

📖Notable Publications

The effectiveness of solar radiation management using fine sea spray across multiple climatic regions
Authors: Z Song, S Yu, P Li, N Yao, L Chen, Y Sun, B Jiang, D Rosenfeld
Journal: Atmospheric Chemistry and Physics
Year: 2025

Photostationary state assumption seriously underestimates NOx emissions near large point sources at 10 to 60 m pixel resolution
Authors: L Chen, Z Song, N Yao, H Xi, J Li, P Gao, Y Chen, H Su, Y Sun, B Jiang, …
Journal: Proceedings of the National Academy of Sciences
Year: 2025

Multi-task deep learning for quantifying methane emissions from 2-D plume imagery with Low Signal-to-Noise Ratio
Authors: Q Xu, X Gu, P Li, X Gu
Journal: International Journal of Remote Sensing
Year: 2024

Less anthropogenic aerosol indirect effects are a potential cause for Northeast Pacific warm blob events
Authors: N Yao, Z Song, L Chen, Y Sun, B Jiang, P Li, J Chen, S Yu
Journal: Proceedings of the National Academy of Sciences
Year: 2024

Different contributions of meteorological conditions and emission reductions to the ozone pollution during Shanghai’s COVID-19 lockdowns in winter and spring
Authors: X Dou, M Li, Y Jiang, Z Song, P Li, S Yu
Journal: Atmospheric Pollution Research
Year: 2024

Md Ibrahim Shikder Mahin | Computational Modeling | Best Researcher Award-1831

Mr. Md Ibrahim Shikder Mahin | Computational Modeling | Best Researcher Award

Bangladesh University of Business and Technology (BUBT), Bangladesh

👨‍🎓Profile

🎓 Early Academic Pursuits

Md. Ibrahim Shikder Mahin began his academic journey with a strong foundation in science at Gandaria High School. His passion for technology and engineering led him to Government Shaheed Suhrawardy College, where he pursued the Higher Secondary School Certificate (HSC) in Science. Recognizing the significance of electrical and electronics engineering in shaping the future of robotics, AI, and blockchain technology, he enrolled at the Bangladesh University of Business & Technology (BUBT) for a Bachelor of Science (B.Sc.) in Electrical and Electronics Engineering (EEE), equipping himself with the necessary knowledge to contribute to advanced research and industry developments.

💼 Professional Endeavors

Md. Ibrahim Shikder Mahin has built a diverse professional career spanning multiple industries, including robotics, AI, blockchain, and electrical engineering. He is currently serving as a Research Assistant at Bangladesh University of Business & Technology (BUBT) since January 2025, where he is involved in cutting-edge research in AI, blockchain, and robotics. Prior to this role, he gained hands-on experience as a Supply Chain Management Intern at Vivo, where he worked on logistics optimization, inventory management, and supply chain automation.

🔬 Contributions and Research Focus

Md. Ibrahim Shikder Mahin is dedicated to advancing AI-driven systems, blockchain security, and IoT-enabled automation. His research focuses on integrating deep learning, image processing, and decentralized finance (DeFi) technologies into real-world applications. One of his key contributions is the Crypto Payment & NFT Minting System in Hitmakr, where he developed a blockchain-based payment solution integrating ERC-20 token transfers and ERC-1155 NFT subscriptions.

Another innovative project he led is the AI-Based Fire Resistance System, which utilizes OpenCV, YoloV11, Google Speech Recognizer, and Raspberry Pi to detect and suppress fires efficiently. His work on Weather Forecasting for Farming demonstrates the use of deep-learning time series models to assist farmers in predicting the best crops for specific climatic conditions. Additionally, his project on Forecasting Total Cloud Coverage in the Sky implements hybrid AI models to enhance solar farm efficiency by predicting cloud coverage. His research and development efforts continue to push the boundaries of technology and automation.

🌍 Impact and Influence

Through his extensive work in academic research, industrial projects, and blockchain innovations, Md. Ibrahim Shikder Mahin has significantly contributed to the advancement of AI, IoT, and decentralized applications. His projects aim to bridge the gap between cutting-edge technology and practical implementation, particularly in areas such as agriculture, energy, and finance. His innovations in automation, AI-driven robotics, and deep learning applications are shaping the future of smart technology and digital transformation.

📑 Academic Cites

As a researcher with a focus on AI, blockchain, and robotics, his contributions have the potential to be widely cited in academic research related to AI-driven automation, electrical engineering advancements, and blockchain applications. His work in integrating AI into power systems, security protocols, and sustainable energy solutions paves the way for future academic studies and industrial applications.

🛠️ Technical Skills

Md. Ibrahim Shikder Mahin possesses a broad range of technical skills that allow him to excel in AI development, blockchain programming, and IoT system integration. His programming expertise includes Python, C, and Solidity, which he applies in deep learning, smart contract development, and embedded system programming. He has extensive experience with AI frameworks such as TensorFlow, OpenCV, and YOLO, enabling him to develop computer vision applications and predictive analytics models.

His blockchain development experience includes smart contract deployment, Ethereum-based applications, and NFT development. In the IoT and robotics domain, he has worked with Raspberry Pi, Arduino, and embedded systems, focusing on automation and industrial robotics. Additionally, his background in electrical engineering includes power distribution, circuit design, and renewable energy integration, making him a well-rounded technology professional.

👨‍🏫 Teaching Experience

As a Research Assistant at BUBT, Md. Ibrahim Shikder Mahin has been actively involved in mentoring students and guiding research projects in blockchain applications, AI modeling, and robotics innovations. His passion for teaching and knowledge sharing has enabled him to train students in emerging technologies, helping them develop hands-on experience with real-world applications. His ability to simplify complex technical concepts makes him a valuable mentor for aspiring engineers and researchers.

🚀 Legacy and Future Contributions

Md. Ibrahim Shikder Mahin is committed to pioneering technological advancements in AI-driven robotics, blockchain security, and sustainable energy solutions. His long-term vision is to develop intelligent automation systems that contribute to smart city initiatives, energy-efficient solutions, and decentralized financial systems. He aspires to revolutionize the field of AI and blockchain by integrating automation, security, and scalability into real-world applications.

📖Notable Publication

Real-Time Rapid Accident Detection for Optimizing Road Safety in Bangladesh
  • Authors: Md Shamsul Arefin, Md Ibrahim Shikder Mahin, Farzana Akter Mily
  • Journal: Heliyon
  • Year: 2025

Yang Yang | Computational Modeling | Best Researcher Award

Mr. Yang Yang | Computational Modeling | Best Researcher Award

National University of Sciences & Technology (NUST), China

👨‍🎓Profiles

🌱 Early Academic Pursuits

Yang Yang's academic journey began with a strong foundation in artificial intelligence and data mining. His keen interest in open-world data mining led him to explore innovative methods for handling complex, evolving datasets. As a student, he displayed exceptional analytical abilities and a deep curiosity for AI-driven solutions. This early dedication laid the groundwork for his later contributions to AI research and interdisciplinary applications.

💼 Professional Endeavors

Currently a professor at Nanjing University of Science and Technology, Yang Yang has established himself as a leading researcher in artificial intelligence. His professional journey includes significant contributions to theoretical and applied AI, particularly in the fields of smart agriculture and smart education. As an active member of the IEEE, he has engaged in numerous high-impact projects, shaping the landscape of AI research and its real-world implementations.

🔬 Contributions and Research Focus

Yang Yang specializes in open-environment data mining, addressing key challenges such as modal interaction, decision adaptation, and model evolution. His work has resulted in groundbreaking solutions for reliable multi-modal representation, robust inference decision-making, and continuous evolution modeling. These advancements have significantly improved the robustness of AI models in dynamic environments, making them more adaptable to changes in data features, labels, and content across various tasks. His research has played a pivotal role in enhancing AI-driven decision-making in practical applications.

🌍 Impact and Influence

With an impressive citation index of 1,289, Yang Yang's research has been widely recognized and referenced by esteemed academicians and Fellows of globally renowned societies such as IEEE, ACM, and AAAS. His innovative methodologies have influenced AI research and have been successfully implemented in smart agriculture and smart education, contributing to advancements in precision farming and intelligent learning systems.

📚 Academic Citations and Recognitions

Yang Yang has published 22 papers in top-tier SCI, IEEE, and ACM journals, many of which are considered foundational in open-world data mining. His outstanding contributions earned him the Best Paper Award at ACML 2017, highlighting his excellence in AI research. Additionally, his papers have been referenced in prestigious international journals and conferences, further establishing his authority in the field.

🛠️ Technical Skills

Yang Yang possesses expertise in:
✅ Open-world data mining
✅ AI-driven decision-making models
✅ Multi-modal representation learning
✅ Continuous evolution modeling
✅ Smart agriculture and education applications

His ability to bridge AI theory with practical applications has set new benchmarks in interdisciplinary AI research.

🎓 Teaching Experience

As a professor, Yang Yang is deeply committed to mentoring and guiding students in the fields of AI and data science. His expertise has helped shape the next generation of AI researchers by providing them with a strong foundation in theoretical and applied AI. His involvement in prestigious AI competitions, where he has won 20 championships, further demonstrates his dedication to both learning and teaching.

🔍 Research Projects and Patents

Yang Yang has led several high-profile research projects, including the Young Scientists Project of the National Key Research and Development Program on Autonomous Software for the Application of Scientific Data in Agricultural Breeding. His research has resulted in three patents, showcasing his ability to transform theoretical AI advancements into tangible, real-world innovations.

🚀 Legacy and Future Contributions

Yang Yang’s research continues to push the boundaries of AI by focusing on the development of more adaptive and resilient AI models. His contributions to smart agriculture and smart education are paving the way for future innovations in AI-driven industries. His legacy will be defined by his ability to bridge the gap between theoretical AI research and its practical, real-world applications. Moving forward, he aims to expand his research into more interdisciplinary fields, further enhancing AI's impact on society.

📖Notable Publications

Adaptive deep models for incremental learning: Considering capacity scalability and sustainability
Authors: Y. Yang, D.W. Zhou, D.C. Zhan, H. Xiong, Y. Jiang
Journal/Conference: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
Year: 2019

Complex object classification: A multi-modal multi-instance multi-label deep network with optimal transport
Authors: Y. Yang, Y.F. Wu, D.C. Zhan, Z.B. Liu, Y. Jiang
Journal/Conference: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
Year: 2018

Learning to classify with incremental new class
Authors: D.W. Zhou, Y. Yang, D.C. Zhan
Journal/Conference: IEEE Transactions on Neural Networks and Learning Systems
Year: 2021

Deep learning for fixed model reuse
Authors: Y. Yang, D.C. Zhan, Y. Fan, Y. Jiang, Z.H. Zhou
Journal/Conference: Proceedings of the AAAI Conference on Artificial Intelligence
Year: 2017

Semi-supervised multi-modal multi-instance multi-label deep network with optimal transport
Authors: Y. Yang, Z.Y. Fu, D.C. Zhan, Z.B. Liu, Y. Jiang
Journal/Conference: IEEE Transactions on Knowledge and Data Engineering
Year: 2019

 

Nasarul Islam | Computational Chemistry | Best Researcher Award

Assist. Prof. Dr. Nasarul Islam | Computational Chemistry | Best Researcher Award

HKM Degree College Bandipora, India

👨‍🎓Profiles

🏫 Early Academic Pursuits

He embarked on his academic journey with a passion for Theoretical Inorganic and Organic Chemistry. His research during his Ph.D. focused on developing OLED and nonlinear device materials using computational methods. He delved into the electronic structure and spectral properties of chiro-optic systems and explored structure-property relationships for materials with applications in optical, magnetic, and electrical domains. These foundational experiences shaped his expertise in theoretical chemistry and material design.

💼 Professional Endeavors

He serves as an Assistant Professor in the Department of Chemistry at HKM-Govt. Degree College, Bandipora, J&K, India, since April 11, 2017. Alongside his teaching duties, he is an Academic Counsellor for Indira Gandhi National Open University (IGNOU). His collaborative work extends to notable institutions, including the National Institute of Technology, Jalandhar, where he investigates reaction mechanisms and molecular dynamics of ionic liquids in collaboration with Dr. Vikramjeet Singh.  Previously, Dr. Islam contributed significantly to research under the mentorship of Prof. (Dr.) S. S. Chimni at Guru Nanak Dev University, Amritsar. His work focused on enantioselective product formation from organocatalyzed processes and transition-state mechanisms.

🔬 Contributions and Research Focus

His research interests are rooted in computational chemistry. He employs quantum mechanical methods to design and investigate materials for energy storage and conversion, OLED devices, and transport systems. His work bridges theoretical models and practical applications, synthesizing theoretically designed charge transport materials for experimental validation. His focus spans: The electronic and optical properties of chiro-optic systems, Energy storage and conversion materials, Quantum mechanical studies on molecular dynamics and ionic liquids.

🌟 Impact and Influence

His contributions have earned him international recognition. He is an MRSC fellow of the Royal Society of Chemistry, UK, and has been acknowledged with numerous awards, including: The DSK Postdoctoral Fellowship (UGC-India), Recognition for outstanding contributions in reviewing from Spectrochimica Acta Part A, Multiple awards for oral and poster presentations at conferences. He also serves on the editorial boards of Frontiers in Applied Chemistry and the Journal of Computational Chemistry & Molecular Modelling, influencing research dissemination in his field.

📚 Academic Citations and Publications

He has an extensive portfolio of research publications cited globally. His work on OLED materials and ionic liquids is highly regarded, reflecting his impact in theoretical and applied chemistry.

🛠️ Technical Skills

He is proficient in a variety of computational and analytical techniques, including: Quantum mechanical modeling, Molecular dynamics simulations, Spectral analysis and transport property evaluation.

👩‍🏫 Teaching and Mentorship

As an educator, He is committed to advancing chemical education. His teaching philosophy integrates research with pedagogy, inspiring students to explore complex chemical systems. His guidance extends to research projects and academic counseling, fostering a culture of scientific curiosity.

🌍 Legacy and Future Contributions

His legacy lies in bridging computational insights with real-world applications, particularly in energy systems and material design. Moving forward, he aims to expand his research on sustainable materials and enhance collaborations to address global challenges in energy and materials science.

🌟 Key Highlights

His work stands as a testament to his dedication to advancing computational chemistry, fostering innovation, and mentoring the next generation of scientists. His endeavors reflect a balanced blend of theoretical exploration, practical synthesis, and impactful teaching.

📖Notable Publications

Advancements in ionic liquid-based corrosion inhibitors for sustainable protection strategies: from experimental to computational insights

Authors: Kumar, P.; Holmberg, K.; Soni, I.; Sillanpää, M.; Chauhan, V.
Journal: Advances in Colloid and Interface Science
Year: 2024

Quantitative structure-activity relationship and ADME prediction studies on series of spirooxindoles derivatives for anti-cancer activity against colon cancer cell line HCT-116

Authors: Kaur, S.; Kaur, J.; Zarger, B.A.; Islam, N.; Mir, N.
Journal: Heliyon
Year: 2024

Unveiling the potential of NiFe layered double hydroxide (LDH)/CuWO4 S-scheme heterojunction for sulfamethoxazole photodegradation and nitrobenzene photoreduction to aniline

Authors: Sharma, R.; Sambyal, S.; Mandyal, P.; Chauhan, V.; Shandilya, P.
Journal: Journal of Environmental Chemical Engineering
Year: 2024

Fabrication of dual S-scheme based CuWO4/NiFe/WO3 heterojunction for visible-light-induced degradation and reduction applications

Authors: Sharma, R.; Islam, N.; Priye, A.; Chauhan, V.; Shandilya, P.
Journal: Journal of Environmental Chemical Engineering
Year: 2024

Cu2O/WO3: A promising S-scheme heterojunction for photocatalyzed degradation of carbamazepine and reduction of nitrobenzene

Authors: Mandyal, P.; Sharma, R.; Sambyal, S.; Chauhan, V.; Shandilya, P.
Journal: Journal of Water Process Engineering
Year: 2024

An Updated Overview on the Synthesis and Anticancer Evaluation of Quinazoline Derivatives

Authors: Kaur, J.; Kaur, S.; Anand, A.; Singh, S.; Singh, A.
Journal: ChemistrySelect
Year: 2023