Wenkai Huang | Environmental Chemistry | Best Researcher Award

Dr. Wenkai Huang | Environmental Chemistry | Best Researcher Award

University of Barcelona | Spain

Dr. Wenkai Huang is a dynamic early-career researcher in materials science and environmental chemistry, specializing in the design, synthesis, and application of advanced nanomaterials for sustainable energy and environmental remediation. His research focuses on carbon nanomaterials, transition-metal nanoparticles, and single-atom catalysts, with applications spanning hydrogen energy, catalytic conversion, and wastewater treatment. Wenkai has made significant contributions to the development of high-performance catalysts for controlled hydrogen generation, including innovative “on-off” switch catalytic systems for hydrazine, formic acid, ammonia borane, and related hydrogen-storage materials. His work has been published in leading journals such as International Journal of Hydrogen Energy, Fuel, ACS Applied Nano Materials, Carbon Energy, and Green Chemical Engineering, demonstrating both scientific rigor and originality. He has also advanced environmental catalysis through the synthesis of Co₃O₄ nanocubes and lignin-derived carbon materials for the degradation of emerging contaminants in wastewater, contributing to more efficient pollutant removal technologies. In addition to his journal publications, Wenkai is co-inventor on patents related to graphene quantum dots and porous carbon nanospheres, reflecting his strength in translating research into practical innovations. His academic journey from top-performing undergraduate at Lanzhou University of Technology, to postgraduate excellence at China Three Gorges University, to his current research at the University of Barcelona demonstrates consistent achievement supported by multiple competitive scholarships, including the China Scholarship Council award. Combined with earlier engineering experience in advanced aluminum materials, Wenkai brings strong interdisciplinary expertise to the advancement of clean energy catalysis and environmental nanotechnology.

Profiles : Scopus | ORCID

Featured Publications

Huang, W., Llopart-Roca, P., Nieto-Sandoval, J., Bayarri, B., & Sans, C. (2025). Enhanced peroxymonosulfate activation by oxalic acid–activated lignin-derived carbon to degrade sulfamethoxazole: Performance and mechanism. Green Chemical Engineering.

Xu, F., Wang, Y., Wang, C., Huang, W., & Liu, X. (2023). Dehydrogenation of hydrous hydrazine over carbon nanosphere-supported PtNi nanoparticles for on-demand H₂ release. Fuel, 332, 126116.

Huang, W., Xu, F., Li, D., Astruc, D., & Liu, X. (2023). “On–off” switch for H₂ and O₂ generation from HCOOH and H₂O₂. Carbon Energy, 5(3), e269.

Huang, W., Xu, F., Tian, S., Wang, C., & Liu, X. (2022). Bimetallic PtNi nanoclusters supported on carbon nanospheres as catalysts for H₂ production from dimethylamineborane hydrolysis. ACS Applied Nano Materials.

Huang, W., Jin, X., Li, Q., et al. (2023). Co₃O₄ nanocubes for degradation of oxytetracycline in wastewater via peroxymonosulfate activation. ACS Applied Nano Materials, 6(13), 12497–12506.

Jiying Zhu | Environmental Chemistry | Best Researcher Award

Ms. Jiying Zhu | Environmental Chemistry | Best Researcher Award

Shandong University of Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ms. Jiying Zhu has established a strong academic foundation in agricultural and food engineering, beginning her distinguished career with a commitment to solving global challenges related to organic waste conversion. Her academic journey led her to international collaboration early on, particularly through her experiences at The Ohio State University-OARDC, where she served as a Visiting Scholar from 2008 to 2009, and later as a Postdoctoral Researcher from 2012 to 2013. These international experiences significantly broadened her research vision and expertise in biological engineering.

🧑‍🏫 Professional Endeavors

Ms. Zhu has been an integral part of the School of Agricultural and Food Engineering at Shandong University of Technology, China, for over a decade. She served as an Associate Professor from 2009 to 2018, and due to her outstanding contributions in research and education, she was promoted to Professor in January 2019. Throughout her tenure, she has been at the forefront of promoting sustainable agricultural engineering practices, mentoring students, and leading impactful research initiatives.

🔬 Contributions and Research Focus

Ms. Zhu’s research primarily focuses on the conversion of organic wastes into volatile fatty acids (VFAs) through anaerobic mixed-culture fermentation. She investigates how the organic components of substrates and various fermentation conditions influence the yield and distribution of VFAs. Her studies also delve deeply into the metabolic pathways governing the chain elongation of small molecular intermediates, aiming to overcome bottlenecks and limiting factors. Her overarching goal is to develop carbon source flow regulation strategies that enhance the accumulation of specific target products, contributing to more efficient and sustainable waste management and bioresource utilization.

🌎 Impact and Influence

Ms. Zhu’s pioneering work addresses a critical global need — the sustainable transformation of organic waste into valuable biochemical products. By advancing knowledge on metabolic regulation during fermentation processes, she supports the development of circular bioeconomy models that can significantly reduce environmental pollution and enhance resource recovery. Her findings have practical implications for industries focusing on renewable bioenergy, waste valorization, and environmental sustainability.

📚 Academic Citations

Given the technical relevance and environmental urgency of her research, Ms. Zhu’s work has steadily gained recognition in the academic community. Her research outputs contribute significantly to fields such as biochemical engineering, environmental biotechnology, and waste-to-energy systems, building a strong citation record that continues to expand as sustainable waste conversion grows in importance globally.

🛠️ Technical Skills

Ms. Zhu’s technical expertise includes anaerobic fermentation technology, organic waste characterization, metabolic pathway analysis, volatile fatty acid production optimization, and process regulation for targeted bioproduct accumulation. Her skill set positions her uniquely at the intersection of biological engineering, sustainable waste management, and process optimization.

👩‍🏫 Teaching Experience

Alongside her research activities, Ms. Zhu has been deeply committed to academic mentorship and education. She has guided undergraduate and postgraduate students at Shandong University of Technology, fostering a research culture that emphasizes innovation, problem-solving, and sustainability. Her teaching philosophy integrates hands-on experimentation with theoretical modeling, preparing students to tackle real-world challenges in agricultural and food engineering.

🌟 Legacy and Future Contributions Highlight

Ms. Zhu’s legacy will be defined by her transformative contributions to the sustainable bioconversion of organic wastes. Looking ahead, she is poised to explore advanced metabolic engineering strategies and precision fermentation technologies to further optimize resource recovery from waste streams. Her continued research and mentorship efforts are set to inspire the next generation of engineers and scientists dedicated to environmental sustainability and renewable resource development.

📖Notable Publications

Hexanoic Acid Production and Microbial Community in Anaerobic Fermentation: Effects of Inorganic Carbon Addition
Authors: Xiaofeng Ji, Zhengang Chen, Yingmeng Shen, Longlong Liu, Ranran Chen, Jiying Zhu*
Journal: Bioresource Technology
Year: 2024 | Volume 403: 130881

Regulation of Hydraulic Retention Time on Caproic Acid Production via Two-Phase Anaerobic Fermentation of Chinese Cabbage Waste with Autopoietic Electron Donors
Authors: Ranran Chen, Xiaofeng Ji, Zhengang Chen, Liu Huang, Jiying Zhu*
Journal: Journal of Biotechnology
Year: 2024 | Volume 381: 1-10

Effects of Yeast Inoculation Methods on Caproic Acid Production and Microbial Community During Anaerobic Fermentation of Chinese Cabbage Waste
Authors: Ranran Chen, Xiaonan Zhou, Liu Huang, Xiaofeng Ji, Zhengang Chen, Jiying Zhu*
Journal: Journal of Environmental Management
Year: 2024 | Volume 356: 120632

Acidogenic Fermentation of Potato Peel Waste for Volatile Fatty Acids Production: Effect of Initial Organic Load
Authors: Lu Yu, Ranran Chen, Liu Huang, Xiangyou Wang, Santao Chou, Jiying Zhu*
Journal: Journal of Biotechnology
Year: 2023 | Volume 374: 114-121

Effect of pH on Volatile Fatty Acid Production and the Microbial Community During Anaerobic Digestion of Chinese Cabbage Waste
Authors: Xiaonan Zhou, Yu Lu, Liu Huang, Qi Zhang, Jiying Zhu*
Journal: Bioresource Technology
Year: 2021 | Volume 336: 125338