Assist. Prof. Dr. Rajendra Kumar Konidena | Organic Chemistry | Best Researcher Award
Indian Institute of Technology-Patna, India
Profiles
Early Academic Pursuits
Dr. Rajendra Kumar Konidena embarked on his academic journey with a strong foundation in the sciences, completing his secondary education and intermediate studies with notable scores in Andhra Pradesh, India. He earned his Bachelor of Science degree in Chemistry, Physics, and Mathematics from Acharya Nagarjuna University with an impressive 85% marks. Progressing further, he completed his Master of Science in Organic Chemistry at VIT University with a CGPA of 8.99/10. His academic rigor culminated in a Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Roorkee, where he specialized in “Multi-Substituted Carbazole-Based Functional Materials for Optoelectronic Applications” under the supervision of Dr. K. R. Justin Thomas.
Professional Endeavors
Dr. Konidena has held several prestigious fellowships reflecting his sustained research excellence. He was awarded the Ramanujan Fellowship by SERB-India, the ERA postdoctoral fellowship by Marie-Curie Actions, and fellowships by the Japanese Society for the Promotion of Science (JSPS), National Research Foundation (NRF) of South Korea, and the National Postdoctoral Fellowship (NPDF) by SERB-DST India. He also undertook key research projects funded by national and international agencies, including leading a JSPS-funded project on MR-TADF emitters and collaborating on an NRF-funded project aimed at enhancing TADF device efficiency.
Contributions and Research Focus
Dr. Konidena’s research primarily focuses on the design and synthesis of organic π-conjugated materials with applications in cutting-edge optoelectronic devices such as organic light-emitting diodes (OLEDs), solar cells, molecular sensors, and biomedical devices. His expertise spans molecular design of heterocyclic compounds, photophysical characterizations, electrochemical analysis, and fabrication of organic thin films and devices. His work includes pioneering multi-substituted carbazole materials and developing stable, color-tuneable organic emitters for OLED technology.
Impact and Influence
His research has a wide-reaching impact on the advancement of organic electronics, contributing to innovative materials that improve device performance and stability. Through his funded projects and collaborations with both academic and industrial partners, Dr. Konidena has helped drive forward sustainable and efficient organic optoelectronic technologies. His achievements have been recognized globally through prestigious fellowships and awards.
Academic Citations and Recognition
His research outputs have been well received in the scientific community, as reflected in numerous fellowships and awards for his doctoral and postdoctoral work. Notably, he secured the Seal of Excellence for his Marie-Curie fellowship proposal and consistently ranks highly in national examinations such as the CSIR-National Eligibility Test and GATE. His scholarly contributions demonstrate significant academic recognition and influence.
Technical Skills
Dr. Konidena is proficient in a broad range of experimental techniques essential for organic electronics research. These include organic synthesis and purification, structural analysis via NMR, MALDI-TOF, ESI-MS, and FT-IR, electrochemical techniques like cyclic voltammetry, and detailed optical characterizations such as steady-state and time-resolved photoluminescence. He is skilled in physical property analyses including thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), thin film deposition methods including spin coating and high vacuum multilayer film growth, as well as device fabrication and characterization for OLEDs.
Teaching and Mentorship Experience
Throughout his doctoral and postdoctoral tenures, Dr. Konidena has been actively involved in mentoring students and junior researchers, guiding them in experimental design and execution within the domain of organic functional materials. His experience contributes not only to scientific advancements but also to the training and development of the next generation of researchers in organic electronics.
Legacy and Future Contributions
With a trajectory marked by sustained innovation and scholarly excellence, Dr. Konidena is poised to continue contributing to the field of organic optoelectronics. His future work is expected to focus on the development of novel, efficient organic materials and devices with applications in next-generation electronics and sustainable technologies. His ongoing collaborations with academic institutions and industry partners, including consultancy projects, highlight his commitment to translating research into practical applications.
Notable Publications
Leveraging quinoxaline functionalization for the design of efficient orange/red thermally activated delayed fluorescence emitters
Authors: Shantaram Kothavale, Rajendra Kumar Konidena, Hyunjung Lee, Jun Yeob Lee
Journal: Chemical Communications
Year: 2025
Recent advances in the molecular designs of near ultraviolet emitters for efficient organic light emitting diodes
Authors: P. Keerthika, Ankit Kumar, Arthanareeswari Maruthapillai, Venkatramaiah Nutalapati, Rajendra Kumar Konidena
Journal: Journal of Photochemistry and Photobiology C: Photochemistry Reviews
Year: 2025
Strategic molecular design of efficient solution- and vacuum-processable deep-red thermally activated delayed fluorescence emitters featuring remarkable color saturation
Authors: Shantaram Kothavale, Rajendra Kumar Konidena, Won Jae Chung, Unhyeok Jo, Songkun Zeng, Yafei Wang, Jun Yeob Lee
Journal: Chemical Engineering Journal
Year: 2024
Facile dimerization strategy for producing narrowband green multi-resonance delayed fluorescence emitters
Authors: Minlang Yang, Rajendra Kumar Konidena, So Shikita, Takuma Yasuda
Journal: Journal of Materials Chemistry C
Year: 2023
Marching Toward Long‐Wavelength Narrowband Emissive Multi‐Resonance Delayed Fluorescence Emitters for Organic Light Emitting Diodes
Authors: P. Keerthika, Rajendra Kumar Konidena
Journal: Advanced Optical Materials
Year: 2023
Neoteric Advances in Oxygen Bridged Triaryl Boron‐based Delayed Fluorescent Materials for Organic Light Emitting Diodes
Authors: Kenkera Rayappa Naveen, Rajendra Kumar Konidena, P. Keerthika
Journal: The Chemical Record
Year: 2023