Song Ziwei | Catalysis | Research Excellence Award

Assoc. Prof. Dr. Song Ziwei | Catalysis | Research Excellence Award

Yanshan University | China

Ziwei Song is an Associate Professor of Chemical Engineering at Yanshan University, specializing in catalysis, reaction engineering, and sustainable chemical processes. His research focuses on designing advanced catalytic materials, including bimetallic nanostructures and metal–organic frameworks, for biomass valorization, CO₂ conversion, and electrochemical energy coupling. As an independent principal investigator, he has led national and provincial projects on HMF oxidation, water electrolysis, and environmental remediation. His work integrates kinetic modeling, mechanistic insights, and process optimization, with publications in leading international journals.

Citation Metrics (Scopus)

 300
 200
 100
   20
     0

Citations
268

Documents
11

h-index
9

Citations

Documents

h-index

View Scopus Profile View ORCID Profile

Featured Publications

Deepak Mohite | Materials Chemistry | Green Chemistry Award

Mr. Deepak Mohite | Materials Chemistry | Green Chemistry Award

K.H. College Gargoti | India

Mr. Deepak Bandopant Mohite is an emerging material chemistry researcher whose work focuses on developing innovative and sustainable catalytic materials with strong relevance to green chemistry. He holds an M.Sc. in Organic Chemistry and has qualified for prestigious national examinations including CSIR-NET-JRF, SET, and GATE, reflecting his solid academic foundation. Currently, he is serving as an Assistant Professor of Chemistry at Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, affiliated with Shivaji University, Kolhapur, where he has gained two years of full-time teaching and research experience. Alongside his academic role, he is pursuing a Ph.D. at Shivaji University, Kolhapur. His doctoral research “Catalytic studies of titania-coated magnetic mixed metal oxide with interlayer alumina, zirconia, and silica” involves the design, synthesis, and characterization of advanced heterogeneous catalysts that are efficient, reusable, and environmentally benign. Mr. Mohite’s work aims to reduce the ecological footprint of chemical transformations by developing catalysts that offer high activity, selectivity, and recyclability while minimizing waste and energy consumption. His research integrates principles of green chemistry with material innovation, focusing on magnetic mixed metal oxides that can be easily recovered and reused, thereby supporting cleaner industrial processes. He has published his findings in the Journal of Molecular Structure (SCI/Scopus indexed), demonstrating the scientific merit and relevance of his work. Additionally, he holds a granted German patent, reflecting his capability to translate research ideas into applicable technological solutions. Through his contributions, Mr. Mohite is advancing sustainable material development and environmentally responsible catalysis with potential impact across chemical and industrial sectors.

Profile : Scopus

Featured Publication

Mohite, D. B., Pandhare, A. B., Chavan, A. S., Kadam, M. R., Nikam, P. N., Junghare, N. V., Ayyar, M., Rajendran, S., Khan, M. A., Delekar, S. D., Patil, R. P., Santhamoorthy, M., & Santhoshkumar, S. (2026). CoFe₂O₄–Al₂O₃–TiO₂ nanocatalyst: Magnetically retrievable platform for medicinal precursors. Journal of Molecular Structure, 1352(Part 2), 144521.

Jinxiao Li | Inorganic Chemistry | Best Researcher Award

Dr. Jinxiao Li | Inorganic Chemistry | Best Researcher Award

Dalian University | China

Dr. Jinxiao Li, currently affiliated with the College of Environmental and Chemical Engineering, Dalian University, is an accomplished researcher specializing in biomass-derived energy materials and sustainable energy conversion technologies. He earned his Ph.D. in Power Engineering and Engineering Thermophysics from Shandong University, where his doctoral research focused on the preparation of hierarchical porous carbon from plant-based materials and its application in supercapacitors. Over the past decade, Dr. Li has developed a robust research profile that bridges materials chemistry, renewable energy, and catalysis. Dr. Li’s research centers on biomass conversion, porous carbon fabrication, catalyst design, and hydrogen production. His innovative work on nitrogen-doped hierarchical porous carbons and activation techniques for improved electrochemical performance has significantly contributed to the development of high-efficiency supercapacitors and electrocatalytic systems. By integrating green synthesis methods and advanced characterization techniques such as BET, SEM-EDS, TEM, XRD, XPS, ICP, and FTIR, Dr. Li has advanced understanding of the structural-performance relationships in energy materials. With 21 publications, an impressive 1,291 citations, and an h-index of 14 (Scopus), Dr. Li’s scholarly output reflects both quality and influence in the field of energy materials and environmental chemistry. His work not only addresses fundamental scientific challenges but also offers practical implications for clean energy generation and carbon neutrality initiatives. In recognition of his research excellence, Dr. Li has been honored with the Dalian City Young Talents Award and the Outstanding College Graduates of Shandong Province Award. As an active expert member of the Dalian Energy Conservation Association, he continues to promote sustainable development through research and academic service. Dr. Li’s ongoing projects focus on next-generation biomass-based catalysts and hydrogen energy systems, positioning him as a leading figure in the pursuit of sustainable, high-performance energy materials.

Profiles : Scopus | ORCID

Featured Publications

  • Lian, M., Han, X., Li, J., Song, R., Yang, C., Zhang, J., Zhong, H., & Pan, L. (2025). Hierarchical porous carbon supports: Construction, mechanism, and catalytic performance as efficient microreactors for methanol steam reforming. Inorganic Chemistry Communications, 182(Part 2), 115561.

  • Zhao, Y.-e., Li, J., Xu, A., Liu, Y., Lian, M., Zhang, J., Zhong, H., Yang, C., Song, R., & Pan, L. (2025). Hierarchical porous carbon-supported bimetallic catalyst for enhanced low-temperature steam methane reforming. Catalysis Science & Technology.

  • Lv, S., Lian, S., Li, J., Wang, Y., Wei, J., Zhong, H., & Pan, L. (2025). Mechanochemical construction of stable Cu/MCM-41 with efficient hydrogen production via methanol steam reforming. International Journal of Hydrogen Energy, 164, 150818.

  • Li, J., Han, K., & Li, S. (2018). Porous carbons from Sargassum muticum prepared by H3PO4 and KOH activation for supercapacitors. Journal of Materials Science: Materials in Electronics.