Emma Rebeca Macías Balleza | Polymer Chemistry | Best Researcher Award

Prof. Dr. Emma Rebeca Macías Balleza | Polymer Chemistry | Best Researcher Award

University of Guadalajara, Mexico

👨‍🎓Profiles

🎓 Early Academic Pursuits

Emma Rebeca Macías Balleza began her academic journey with a Bachelor’s degree in Chemical Engineering (1990) from the University of Guadalajara, followed by a Master of Science in Chemical Engineering (1994). Her passion for materials and chemical processes led her to pursue a Doctorate in Science in Chemical Engineering at the same university, in cotutorship with a Doctorate in Physics from the University of Grenoble, France (2002). This strong foundation in multidisciplinary studies allowed her to develop expertise in polymers, nanomaterials, and complex fluid rheology.

🏛️ Professional Endeavors

Currently, she serves as a Senior Research Professor at the Department of Chemical Engineering in the University Centre of Exact Sciences and Engineering, University of Guadalajara. Over the years, she has actively contributed to industrial and academic projects, fostering international collaborations with institutions such as Université Grenoble Alpes (France), Université de Rennes (France), and the University of Santiago de Compostela (Spain). Her consultancy work extends to more than ten industry projects, further bridging the gap between theoretical research and practical applications.

🔬 Contributions and Research Focus

Her research is centered on polymer synthesis and characterization, the rheology of complex fluids, and the development of nanomaterials from agroindustrial waste for reinforcement in polymeric and construction matrices. These areas of expertise contribute significantly to sustainable materials engineering, where she explores innovative ways to utilize waste materials for high-performance applications.

🌍 Impact and Influence

Emma Macías Balleza is a recognized researcher and academic leader, having completed ten collaborative research projects and published extensively. She has played a pivotal role in shaping research policies and evaluations at both institutional and national levels. As a National System of Researchers member since 2002 and a Professor with a Desirable Profile by the Ministry of Public Education since 2000, she continuously influences the next generation of researchers.

📊 Academic Citations and Publications

Her extensive publication record includes:

  • Google Scholar: 60 documents, 746 citations, h-index 16
  • Scopus: 38 documents, 572 citations, h-index 14
  • SCI/Scopus Indexed Journals: 43 publications
    She has also contributed to three chapter books, enhancing the global knowledge base in analytical chemistry and polymer engineering.

🛠️ Technical Skills

Her technical expertise spans polymer characterization, rheological analysis, nanomaterial synthesis, and analytical chemistry techniques. She has extensive experience in material testing and the application of nanotechnology in industrial and construction materials.

👩‍🏫 Teaching Experience and Mentorship

Emma Macías Balleza is deeply involved in postgraduate education, contributing as a faculty member in Materials Science programs. She has mentored numerous students and participated in advisory roles within institutional and national evaluation committees, such as SEP and CONHACYT. She also serves as a reviewer for prestigious scientific journals, ensuring the advancement of research in her field.

🌟 Legacy and Future Contributions

As the head of the Rheology Academic Group at the University of Guadalajara, she has been instrumental in advancing research on fluid behavior in complex systems. Her contributions to the study of sustainable nanomaterials hold promise for future advancements in environmentally friendly polymers and industrial applications. Looking ahead, her work aims to further integrate circular economy principles into materials science, promoting green and efficient solutions for polymer engineering.

📖Notable Publications

  • Influence of Chemical, Morphological, Spectroscopic and Calorimetric Properties of Agroindustrial Cellulose Wastes on Drainage Behavior in Stone Mastic Asphalt Mixtures

    • Authors: L.Y. Cabello-Suárez, J. Anzaldo-Hernández, J.R. Galaviz-Gonzalez, P. Limón-Covarrubias, E.R. Macías-Balleza
    • Journal: Materials
    • Year: 2024
  • Thermoplastic Starch Biocomposite Films Reinforced with Nanocellulose from Agave tequilana Weber var. Azul Bagasse

    • Authors: M.G. Lomelí-Ramírez, B. Reyes-Alfaro, S.L. Martínez-Salcedo, E.R. Macías-Balleza, S. García-Enriquez
    • Journal: Polymers
    • Year: 2023
  • Structural Behavior of Amphiphilic Triblock Copolymer P104/Water System

    • Authors: É.B. Figueroa-Ochoa, L.M. Bravo-Anaya, R. Vaca-López, Y. Rharbi, J.F.A. Soltero-Martínez
    • Journal: Polymers
    • Year: 2023
  • Optimization of the obtaining of cellulose nanocrystals from agave tequilana weber var. Azul Bagasse by acid hydrolysis

    • Authors: M.A. Gallardo-Sánchez, T. Diaz-Vidal, A.B. Navarro-Hermosillo, S.G. Enríquez, E.R. Macías-Balleza
    • Journal: Nanomaterials
    • Year: 2021

Samiris Cocco Teixeira | Polymer Chemistry | Best Researcher Award

Mrs. Samiris Cocco Teixeira | Polymer Chemistry | Best Researcher Award

Federal University of Vicosa, Brazil

👨‍🎓Profiles

🎓 Early Academic Pursuits

Samiris Cocco Teixeira embarked on her academic journey with a Bachelor’s degree in Food Science and Technology from the Federal Institute of Espírito Santo (2015–2018). She further honed her expertise by earning a Master’s degree (2019–2021) and later a Doctor Scientiae (DS) in Food Science and Technology (2021) from the Federal University of Viçosa. Her rigorous academic training laid the foundation for her contributions to food science and polymer research.

🌟 Professional Endeavors

Samiris has actively contributed to cutting-edge research in food science and materials technology. Currently, she is a Visiting Scholar for Research and Development at Lincoln University, New Zealand (2025–2026), where she is engaged in polymer extraction from waste resources and the development of biodegradable and biocompatible sensors. Previously, she served as a Visiting Scholar at Iowa State University, USA (2023), working on surface modification of cellulose acetate using cold plasma and investigating its effectiveness in PFAS extraction from Kraft paper. Additionally, she played a pivotal role in Research and Development at the Laboratory of Packaging in Viçosa, Brazil (2019–2023), conducting advanced polymer analyses.

🔬 Contributions and Research Focus

Her research spans diverse areas, including biodegradable materials, polymer analysis, and sustainable food packaging technologies. She has conducted in-depth studies on the design of plant-wearable sensors for real-time monitoring, surface modification techniques using cold plasma, and remediation potential of PFAS in food packaging. Her collaborations with institutions like the University of São Paulo have expanded the impact of her research in biodegradable materials and environmental sustainability.

🌍 Impact and Influence

Samiris’s work in polymer science and food technology has had a significant impact on the industry and academia. Her research on cold plasma treatments and biodegradable packaging has contributed to innovative solutions for sustainable packaging and food safety. She has assisted industries and researchers in developing advanced polymer-based solutions through state-of-the-art physical and chemical analyses.

🌐 Academic Citations

Her research has been recognized in several esteemed journals, leading to citations in prominent studies related to biodegradable materials, polymer engineering, and food packaging science. Her contributions to sustainable material development continue to inspire new investigations in food technology and material sciences.

📝 Technical Skills

Samiris possesses expertise in a range of cutting-edge analytical instruments, including: Universal Mechanical Testing Machine (Instron Corporation, USA), Scanning Electron Microscope (Hitachi Hi-Tech, Japan), DTG Thermal Analyzer (SHIMADZU, Japan), FT-IR Spectroscopy (Thermo Scientific, USA), Colorimeter (HunterLab, USA), UV-vis Spectrophotometer (Shimadzu, Japan), Zetasizer Nano ZS (Malvern, UK), Gas Permeability Testing (Labthink Instruments, China).

🏫 Teaching Experience

Throughout her academic journey, Samiris has mentored students and provided technical training in polymer analysis and biodegradable material applications. She has also been involved in academic events and research workshops, enhancing knowledge dissemination in the field of food technology and polymer science.

💪 Legacy and Future Contributions

Looking ahead, Samiris aims to expand her research in biodegradable polymers and smart food packaging. Her work in sustainable polymer extraction and sensor development positions her as a key figure in the advancement of eco-friendly materials and food safety technologies. She is committed to bridging the gap between academia and industry, ensuring that her research translates into real-world applications for a more sustainable future.

🏆 Recognitions and Awards

Samiris’s outstanding contributions have been acknowledged with several prestigious awards, including: Best Student Paper Competition in Special Issue "Biomaterials and Bioactivities in Food Science" (Food Bioscience Journal), Nélio José de Andrade Prize for Best Dissertation in Postgraduate Program in Food Science and Technology (Federal University of Viçosa), 3rd Best Work in Materials Engineering at the 5th Meeting of Researchers in Materials Science and Engineering, Honorable Mention for oral presentation on the shelf life of frozen pizza at academic events.

📖Notable Publications

Kalpana Pandey | Polymer Chemistry | Best Researcher Award

Dr. Kalpana Pandey | Polymer Chemistry | Best Researcher Award

KOREATECH, South Korea

👨‍🎓Profiles

Early Academic Pursuits 🎓

Dr. Kalpana Pandey’s academic journey began with a solid foundation in polymer science and technology. She completed her M.Sc. in Polymer Science & Technology from Gujarat University at CIPET, Ahmedabad, followed by a B.Sc. in Polymer Science & Technology from Bhaskaracharya College of Applied Sciences, University of Delhi. During these formative years, she developed a strong passion for material science, which later fueled her research in biopolymers and their applications in environmental and sustainable technologies.

Professional Endeavors 🏢

Her professional career has seen her in several roles contributing significantly to material science and engineering. She is currently serving as a Postdoctoral Researcher at KOREATECH, South Korea since October 2023. Prior to this, she worked at IIT Delhi as a Research Associate in the Department of Material Science and Engineering and contributed to various significant industrial and academic research projects. Her collaboration with Dr. Dibakar Rakshit and Dr. Sampa Saha at IIT Delhi in the development of Cellulose-based Phase Change Materials is one of her notable professional undertakings.

Contributions and Research Focus 🔬

Her research primarily focuses on biodegradable polymers, groundwater remediation, and sustainable materials. Her Ph.D. thesis, titled “Studies on zero-valent iron encapsulated biodegradable polymer particles for groundwater remediation,” underscores her commitment to addressing environmental concerns through innovative material solutions. Additionally, her contributions to the development of bioplastics and biodegradable packaging films have placed her at the forefront of sustainability efforts in material science.

Impact and Influence 🌍

Her research is making a significant impact in the field of sustainable material development and environmental remediation. Her work in encapsulating zero-valent iron in biodegradable polymers has the potential to revolutionize groundwater remediation techniques, making them more eco-friendly and cost-effective. Additionally, her research on bioplastics and bio composites contributes to reducing the environmental footprint of plastic waste, furthering the global effort to tackle pollution.  Through her awards such as the RETA 2022 Research Excellence Travel Award at IIT Delhi and recognition for Distinction in Doctoral Research, Dr. Pandey has been acknowledged for her research excellence and significant contributions to material science. Her academic work and industrial partnerships continue to influence future innovations in sustainable materials.

Academic Cites 📚

She has contributed significantly to the academic literature in material science and sustainable technologies. Her publications include influential research articles and book chapters that are widely cited in the field of biodegradable polymers and eco-friendly materials. One such contribution is her work on packaging films using microcrystalline cellulose and TiO2, which has been published in the American Journal of Polymer Science and Technology. 

Technical Skills 🛠️

She possesses advanced technical skills in material characterization, including synthesis and functionalization of polymers, and the development of bio-based materials. She is proficient in handling techniques such as blown film extrusion, spectroscopic analysis, and polymer processing. Her research in nano materials such as graphene and carbon nanotubes further highlights her proficiency in handling cutting-edge materials for energy and environmental applications.

Teaching Experience 📖

In addition to her research, Dr. Pandey has been actively involved in mentoring and teaching roles. Her work as a Research Associate at IIT Delhi included supervising undergraduate and postgraduate students in research projects related to material science and environmental remediation. Her mentorship extends beyond formal teaching, as she actively contributes to workshops and seminars to inspire the next generation of scientists in the field of sustainable material research.

Legacy and Future Contributions 🌱

Her long-term goal is to continue making strides in green chemistry and sustainable materials, with a particular focus on biodegradable polymers for environmental cleanup. Her interdisciplinary work is poised to have lasting impacts on environmental remediation, plastic waste management, and the development of sustainable energy materials. 

Her collaborations with international research groups and industrial partners ensure that her work will continue to shape the future of sustainable material science, potentially paving the way for innovations in clean energy technologies and eco-friendly materials.

Conclusion 🏅

Her multifaceted career reflects a dedication to advancing material science, with a particular emphasis on sustainability and environmental protection. Her work in bioplastics, groundwater remediation, and bio-based polymers demonstrates her commitment to innovative, eco-friendly solutions that address pressing global challenges. As she continues her postdoctoral research and prepares for future academic endeavors, Her contributions are set to inspire future advancements in green technology and material engineering.

📖Notable Publications

Architecture dependent transport behavior of iron (0) entrapped biodegradable polymeric particles for groundwater remediation
Authors: Pandey, K., Verma, D.K., Singh, A., Saha, S.
Journal: Chemosphere
Year: 2024

In-situ fabrication of poly-l-lactide & its application as a glass fiber polymer composites using resin transfer molding
Authors: Kim, S.-J., Pandey, K., Poddar, D., Yoo, H.M.
Journal: Polymer Composites
Year: 2024

Stabilization of Iron (0) in plasma treated semi porous polylactic acid based particles for in situ groundwater remediation
Authors: Pandey, K., Saha, S.
Journal: Journal of Environmental Chemical Engineering
Year: 2023

Encapsulation of zero valent iron nanoparticles in biodegradable amphiphilic janus particles for groundwater remediation
Authors: Pandey, K., Saha, S.
Journal: Journal of Hazardous Materials
Year: 2023

Advances in design and synthesis of stabilized zero-valent iron nanoparticles for groundwater remediation
Authors: Pandey, K., Sharma, S., Saha, S.
Journal: Journal of Environmental Chemical Engineering
Year: 2022

Facile technique to encapsulate phase change material in an amphiphilic polymeric matrix for thermal energy storage
Authors: Pandey, K., Ali, S.F., Gupta, S.K., Rakshit, D., Saha, S.
Journal: Applied Energy
Year: 2021

Microencapsulated Zero Valent Iron NanoParticles in Polylactic acid matrix for in situ remediation of contaminated water
Authors: Pandey, K., Saha, S.
Journal: Journal of Environmental Chemical Engineering
Year: 2020