Prof. Huilan Yue | Organic Chemistry | Best Researcher Award

Prof. Huilan Yue | Organic Chemistry | Best Researcher Award

Northwest Institute of Plateau Biology, CAS, China

👨‍🎓Profiles

🎓 Education and Academic Background

Prof. Huilan Yue pursued her Ph.D. in Catalytic Chemistry from the Chengdu Institute of Biology, Chinese Academy of Sciences, under the guidance of Prof. Jian-Xin Ji. Her dissertation focused on C-C bond formation through the direct reaction of alcohols with alkenes and alkynes. Before that, she completed her M.S. in Phytochemical studies at the Northwest Institute of Plateau Biology, Chinese Academy of Sciences, where she researched the chemical constituents of Dracocephalum heterophyllum Benth. under the supervision of Prof. Yun Shao. Her academic journey began with a B.S. in Biological Sciences from Huaibei Normal University.

🏛 Professional Career

Prof. Yue is currently affiliated with the Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China. She has dedicated her career to advancing catalytic chemistry and phytochemical studies, contributing significantly to understanding chemical synthesis and natural product chemistry. Her work is recognized for its interdisciplinary approach, bridging chemistry and biology to explore novel catalytic mechanisms and bioactive compounds.

🏆 Honors and Awards

Prof. Yue has received numerous accolades for her contributions to science and technology. She was honored as a Kunlun Talent Leading Talent in Qinghai Province. She also received the Qinghai Province Youth Science and Technology Award, recognizing her outstanding contributions to research. She was awarded the prestigious “Light of the West” honor from the Chinese Academy of Sciences. Additionally, she has been recognized as a Leading Talent in Natural Science and Engineering Technology Disciplines in Qinghai Province and a Top-notch Innovative Talent in Qinghai Province.

🔬 Research Contributions and Focus

Prof. Yue’s research primarily focuses on catalytic chemistry, organic synthesis, and natural product chemistry. Her work on C-C bond formation via direct reactions of alcohols with alkenes and alkynes has contributed to advancements in green chemistry and sustainable synthesis. Additionally, her research in phytochemistry has led to the discovery and characterization of bioactive compounds from plateau plants, contributing to medicinal and pharmaceutical sciences.

🌍 Impact and Influence

Prof. Yue’s research has had a profound impact on both theoretical and applied chemistry. Her contributions to catalytic reactions have paved the way for more efficient and environmentally friendly synthesis methods, while her phytochemical studies have provided valuable insights into natural product-based drug discovery. Her work has been widely cited and acknowledged in the scientific community, reinforcing her influence in the field of chemistry and biological sciences.

📖 Academic Citations and Recognition

As a leading researcher, Prof. Yue’s work has been published in high-impact scientific journals, earning significant citations. Her studies on catalytic mechanisms and phytochemical discoveries continue to be referenced by researchers in organic chemistry, medicinal chemistry, and natural product research.

🛠 Technical Expertise

Prof. Yue’s expertise spans several key areas, including:

  • Catalytic chemistry and organic synthesis

  • Green chemistry and sustainable catalytic processes

  • Phytochemical analysis and natural product extraction

  • Spectroscopic techniques for chemical characterization

  • Drug discovery and bioactive compound development

👩‍🏫 Teaching and Mentorship

Beyond her research, Prof. Yue is dedicated to mentoring young scientists and researchers in the fields of chemistry and biology. She plays an active role in training postgraduate students, guiding them in experimental research, and fostering critical thinking in scientific exploration.

🚀 Legacy and Future Contributions

Prof. Yue’s ongoing research aims to further the development of sustainable catalytic processes and the discovery of novel bioactive compounds from plateau plants. Her future work will continue to integrate chemistry and biology to address challenges in pharmaceuticals, environmental sustainability, and synthetic chemistry. As a leader in her field, she remains committed to pushing the boundaries of chemical research and contributing to scientific advancements for societal benefit.

📖Notable Publications

  • Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P₄S₁₀ and alcohols

    • Authors: Jindong Hao, Yufen Lv, Shuyue Tian, Wei Wei, Dong Yi, et al.

    • Journal: Chinese Chemical Letters

    • Year: 2024

  • Metal-free visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with t-BuONO

    • Authors: Yufen Lv, Jindong Hao, Jian Huang, Wei Wei, Dong Yi, et al.

    • Journal: Chemical Communications

    • Year: 2024

  • Visible-Light Photoredox-Catalyzed Difunctionalization of Alkynes with Quinoxalin-2(1H)-Ones, P₄S₁₀, and Alcohols

    • Authors: Lianhui Song, Chao Ma, Jian Huang, Wei Wei, Dong Yi, et al.

    • Journal: Journal of Organic Chemistry

    • Year: 2024

  • Characterization of alkaloids and phenolics in Nitraria roborowskii Kom. fruit by UHPLC-triple-TOF-MS/MS and its sucrase and maltase inhibitory effects

    • Authors: Di Wu, Sirong Jiang, Gongyu Wang, Xiaohui Zhao, Huilan Yue, et al.

    • Journal: Food Chemistry

    • Year: 2024

  • Extract of Silphium perfoliatum L. improves lipid accumulation in NAFLD mice by regulating AMPK/FXR signaling pathway

    • Authors: Jiyu Xu, Wenjiang Jing Jia, Guoying Zhang, Dejun Zhang, Xiaohui Zhao, et al.

    • Journal: Journal of Ethnopharmacology

    • Year: 2024

 

Ruby Raj Michael | Organic Chemistry | Best Researcher Award

Dr. Ruby Raj Michael | Organic Chemistry | Best Researcher Award

Yeungnam University, Republic of Korea, India

👨‍🎓Profiles

🎯 Objective

Dr. Ruby Raj Michael is a passionate and innovative researcher with expertise in organic chemistry, polymer chemistry, materials science, and chemical engineering. She is dedicated to pioneering cutting-edge research in energy storage materials, organic electronic materials, and polymer-based solar cells at prestigious research institutions and universities worldwide.

🎓 Academic Background

Dr. Ruby Raj Michael has a strong academic foundation in chemistry and materials science, with the following degrees:

✔️ Ph.D. in Chemistry (Materials Chemistry) (2008-2013) – National Institute of Technology, Tiruchirappalli, India.
🔹 Thesis: Design and Synthesis of Organic Polymers-Based Solar Cells
🔹 Supervisor: Prof. Dr. S. Anandan

✔️ M.Sc. in General Chemistry (2003-2005) – St. Joseph’s College (Autonomous), India.
✔️ B.Sc. in General Chemistry (2000-2003) – St. Joseph’s College (Autonomous), India.

🔬 Research Expertise & Interests

Dr. Michael specializes in designing and synthesizing novel materials for energy storage, organic electronics, and polymer chemistry, with research interests including:

✅ Energy Storage Materials & Batteries 🔋
✔️ Silicon-Encapsulated ZIF-67-Based Hollow Carbon Nanocubic Composites for Lithium-ion batteries.
✔️ Spinel Lithium Titanate (LTO) & Copper Cobalt Carbonate Hydroxide (CuCo CH) for advanced battery anodes.
✔️ Metal/Covalent Organic Frameworks (MOFs/COFs) for Lithium/Sodium/Potassium-ion batteries.
✔️ Organic Cathode Materials (Perylenediimide-based Polyimides & Redox-Active Macrocyclic Molecules) for Rechargeable Aluminum-ion Batteries.
✔️ Organic Polymer-Based Electrolytes for Lithium Organic Batteries.

✅ Organic Electronic Materials ⚡
✔️ Design and synthesis of small molecules & conjugated polymers for solar cells, perovskite solar cells, and polymer field-effect transistors (FETs).
✔️ Development of hole-transporting materials for next-generation organic electronic devices.

✅ Key Molecular Design Keywords:
🔹 Benzodithiophene (BDT), Thienyl-Substituted BDT (BDTT), Spiro[fluorene-9,9’-xanthene]-based 3D Oligomers, Thienoisoindigo Units.

📚 Academic Impact & Publications

Dr. Michael’s research has led to multiple high-impact SCI publications, contributing to the advancement of energy storage and organic electronics. Her work is widely cited, reflecting its influence in materials chemistry and polymer research.

🛠️ Technical Skills & Expertise

Dr. Michael has expertise in:
✔️ Organic & Polymer Synthesis – Development of functional materials for energy and electronic applications.
✔️ Electrochemical Characterization – Battery performance analysis, cyclic voltammetry, electrochemical impedance spectroscopy.
✔️ Materials Characterization – X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy.
✔️ Device Fabrication & Testing – Polymer solar cells, perovskite solar cells, lithium-ion battery assembly.

🎓 Teaching & Mentorship

As a dedicated mentor and educator, Dr. Michael has guided students in organic chemistry, polymer science, and materials engineering, fostering the next generation of researchers in sustainable energy materials.

🌍 Future Research Vision

Dr. Michael’s research vision focuses on:
🔹 Developing next-generation energy storage materials for high-performance and sustainable batteries.
🔹 Innovating organic electronic materials for efficient and cost-effective solar cells.
🔹 Exploring hybrid polymer frameworks for multifunctional applications in energy and electronics.

📖Notable Publications

  • Fabrication of high-efficiency perovskite solar cells using benzodithiophene-based random copolymeric hole transport material

    • Authors: Vijay Srinivasan Murugesan, Michael Ruby Raj, Hock Beng Lee, Neetesh Kumar
    • Journal: Electrochimica Acta
    • Year: 2025
  • Recent Advances in Development of Organic Battery Materials for Monovalent and Multivalent Metal-Ion Rechargeable Batteries

    • Authors: Michael Ruby Raj, Gibaek Lee, Mogalahalli Venkatashamy Reddy, Karim Zaghib
    • Journal: ACS Applied Energy Materials
    • Year: 2024
  • Extraordinary Ultrahigh‐Capacity and Long Cycle Life Lithium‐Ion Batteries Enabled by Graphitic Carbon Nitride‐Perylene Polyimide Composites

    • Authors: Michael Ruby Raj, Jungwon Yun, Dong‐kyu Son, Gibaek Lee
    • Journal: Energy & Environmental Materials
    • Year: 2023
  • Oxygen vacancy-modulated zeolitic Li₄Ti₅O₁₂ microsphere anode for superior lithium-ion battery

    • Authors: Seohyeon Yeo, Michael Ruby Raj, Gibaek Lee
    • Journal: Electrochimica Acta
    • Year: 2023
  • Hollow Porous N and Co Dual-Doped Silicon@Carbon Nanocube Derived by ZnCo-Bimetallic Metal–Organic Framework toward Advanced Lithium-Ion Battery Anodes

    • Authors: Hongjung Kim, Jinhyuk Baek, Dong-Kyu Son, Michael Ruby Raj, Gibaek Lee
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2022