Xiong He | Inorganic Chemistry | Best Researcher Award

Assist. Prof. Dr. Xiong He | Inorganic Chemistry | Best Researcher Award

Guangxi University of Science and Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Xiong He began his academic journey at the Harbin Institute of Technology, where he pursued a Bachelor’s degree in Nuclear Chemical Engineering (2009-2013). During this time, he gained a solid foundation in nuclear chemistry, materials science, and energy conversion technologies. His keen interest in sustainable energy led him to continue his studies at the same institution, earning a Ph.D. in Chemical Engineering and Technology (2013-2019) under the supervision of Prof. Xin Li. His doctoral research focused on the design of hierarchical TiO₂ photoanodes for dye-sensitized solar cells (DSSCs), aiming to enhance the efficiency of solar energy harvesting and conversion. This research contributed significantly to the development of improved photovoltaic materials, which are crucial for next-generation solar energy applications.

👨‍🏫 Professional Endeavors

After completing his Ph.D., Dr. Xiong He joined Guangxi University of Science and Technology in August 2019 as an Associate Professor in the School of Electronic Engineering. In this role, he has been actively engaged in both teaching and research, with a strong focus on nanomaterials, electrocatalysis, and renewable energy technologies. His work aims to bridge the gap between academic research and practical energy applications, contributing to advancements in clean energy solutions.

🔬 Contributions and Research Focus

Dr. Xiong He’s research primarily focuses on developing high-efficiency catalysts for the electrocatalytic oxygen evolution reaction (OER), a crucial process in green hydrogen production and sustainable energy systems. His work involves designing advanced nanocatalysts, optimizing material structures, and investigating reaction mechanisms to improve energy efficiency. Additionally, his earlier research on hierarchical TiO₂ photoanodes significantly contributed to the development of dye-sensitized solar cells (DSSCs), enhancing their light absorption, charge transport, and overall efficiency. His research findings provide valuable insights into material design strategies that can be applied to various energy conversion technologies.

🌍 Impact and Influence

Dr. Xiong He’s research has made a significant impact on the fields of electrocatalysis, nanotechnology, and renewable energy. His work on catalyst development has contributed to advancing hydrogen fuel production, while his contributions to DSSCs have helped improve solar energy conversion efficiency. By integrating innovative material engineering techniques, his research has provided new strategies for developing efficient, stable, and cost-effective energy solutions. His findings are widely referenced by researchers working on sustainable energy applications, making a lasting impact on the global energy landscape.

📚 Academic Citations

Dr. Xiong He has published extensively in high-impact peer-reviewed journals, and his research has been cited by scholars in the fields of electrocatalysis, nanomaterials, and renewable energy. His contributions continue to shape the development of novel materials for energy storage and conversion, reinforcing his role as a leading researcher in clean energy technologies. His work is widely recognized for its relevance to solving energy challenges and advancing the efficiency of renewable energy systems.

🛠️ Technical Skills

Dr. Xiong He possesses a strong technical background in materials science and electrochemistry. His expertise includes nanomaterial synthesis and characterization, utilizing techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). He is also proficient in electrochemical analysis methods, including cyclic voltammetry and electrochemical impedance spectroscopy, which are essential for evaluating catalyst performance. Additionally, he has experience in photovoltaic device fabrication and efficiency testing, contributing to advancements in solar energy technologies. His skills in computational modeling for catalyst design further enhance his ability to develop and optimize high-performance materials for energy applications.

🎓 Teaching Experience

As an Associate Professor at Guangxi University of Science and Technology, Dr. Xiong He is deeply involved in teaching and mentoring students. He lectures on chemical engineering, nanomaterials, and renewable energy technologies, providing students with both theoretical knowledge and practical skills. He actively supervises undergraduate and graduate research projects, guiding students in developing innovative solutions for energy challenges. His commitment to education extends to training students in advanced laboratory techniques, ensuring that they acquire hands-on experience in material synthesis and characterization. Through his mentorship, he has inspired many students to pursue careers in scientific research and clean energy innovation.

🌟 Legacy and Future Contributions

Dr. Xiong He’s future contributions are aimed at furthering research in electrocatalysis, hydrogen energy, and solar energy conversion. He plans to expand his work on high-performance catalysts, improving their efficiency and stability for large-scale applications. Additionally, he aims to collaborate with international research teams to accelerate the development of sustainable energy solutions. His long-term vision includes bridging the gap between academic research and industrial applications, ensuring that nanomaterials and electrochemical technologies contribute effectively to real-world energy challenges. By continuing to mentor the next generation of scientists and engineers, he hopes to foster innovation and drive advancements in clean energy for a more sustainable future.

📖Notable Publications

Tuning surface hydrophilicity of a BiVO4 photoanode through interface engineering for efficient PEC water splitting

Authors: S. Yu, Shuangwei; C. Su, Chunrong; Z. Xiao, Zhehui; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: RSC Advances

Year: 2025

Rapid electrodeposition synthesis of partially phosphorylated cobalt iron phosphate for application in seawater overall electrolysis

Authors: J. Cai, Jiayang; D. Qu, Dezhi; X. He, Xiong; B. Zhu, Baoning; S. Yu, Shuangwei

Journal: Electrochimica Acta

Year: 2024

Construction of Heterostructured Ni3S2@V-NiFe(III) LDH for Enhanced OER Performance

Authors: Q. Dong, Qianqian; Q. Zhong, Qijun; J. Zhou, Jie; X. He, Xiong; S. Zhang, Shaohui

Journal: Molecules

Year: 2024

Employing shielding effect of intercalated cinnamate anion in NiFe LDH for stable and efficient seawater oxidation

Authors: J. Cai, Jiayang; X. He, Xiong; Q. Dong, Qianqian; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: Surfaces and Interfaces

Year: 2024

 

David Selvaraj | Inorganic Chemistry | Best Researcher Award

Dr. David Selvaraj | Inorganic Chemistry | Best Researcher Award

Chonnam National University, South Korea

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. David Selvaraj embarked on his academic journey in General Chemistry, completing his B.Sc from St. Xavier’s College, Palayamkottai, India. He advanced to earn an M.Sc from Bishop Heber College, Trichy, followed by an M.Phil in General Chemistry from St. Joseph’s College, Trichy. His stellar academic record culminated in a Ph.D. in Material Science from Chonbuk National University, South Korea, where he achieved an impressive. His doctoral thesis explored binary heterostructure photoelectrodes for photoelectrochemical hydrogen production, showcasing his early dedication to sustainable energy solutions.

🧪 Professional Endeavors

His professional path spans research, teaching, and industrial roles. His postdoctoral experiences include: Chonnam National University, South Korea : Focusing on graphene supercapacitors with low leakage currents, Periyar University, India : Artificial synthesis of MCM-41 and its applications, Gwangju Institute of Science and Technology, South Korea Developing TiO₂ nanorods for diverse applications, Previously, he served as an Assistant Professor at Cheran College of Engineering and a Water Quality Controller at the Airport Authority of India, contributing to both academia and industry.

🌟 Contributions and Research Focus

His research addresses critical global challenges, including sustainable energy, advanced materials, and environmental solutions. His notable contributions include: Synthesizing MCM-41 materials for applications like dye degradation, Exploring graphene supercapacitors for energy storage, Developing TiO₂ nanorods for manifold applications through hydrothermal methods, Advancing photoelectrochemical hydrogen production using innovative binary heterostructure photoelectrodes.

🌍 Impact and Influence

He has established himself as a leading figure in materials science, with work that bridges fundamental research and practical applications. His Ph.D. and postdoctoral projects have significantly influenced the fields of energy storage and nanomaterials, while his teaching and mentorship roles have inspired many students and researchers.

📚 Academic Citations and Publications

His research outputs have garnered recognition, with citations reflecting their impact in the scientific community. His work spans areas like photoelectrochemistry, supercapacitors, and corrosion studies, underscoring his broad expertise and relevance.

🛠️ Technical Skills

He is proficient in a wide range of analytical and experimental techniques, including: Photoelectrochemical measurements (LSV, TPR, PEIS), Supercapacitor testing (CV, GCD, EIS), Synthesis techniques like hydrothermal, sol-gel, and spin coating, Chromatography methods (HPLC, GC), Corrosion studies and OCP measurements. He also possesses strong computational and presentation skills, proficient in software like Origin, XRD, and MS Office.

📖 Teaching Experience

As an Assistant Professor at Cheran College of Engineering, He taught and mentored engineering students, fostering their understanding of advanced chemistry concepts. His industrial experience further enriched his teaching, providing practical insights into water quality management and applied chemistry.

🔮 Legacy and Future Contributions

His work promises a lasting legacy in sustainable energy and materials science, particularly in graphene-based energy storage and environmental applications. His ongoing research on low-leakage graphene supercapacitors at Chonnam National University aims to revolutionize energy storage technologies.

📖Notable Publications

Design of modified reference phase modulation based boost chopper fed fifteen level stepped DC link hybrid converter

Authors: Uthirasamy, R., Kumar, S.V., Ananth, C., Gupta, L., Gared, F.

Journal: Scientific Reports

Year: 2024

Recent Progress Using Graphene Oxide and Its Composites for Supercapacitor Applications: A Review

Authors: Sriram, G., Arunpandian, M., Dhanabalan, K., Kurkuri, M.D., Oh, T.H.

Journal: Inorganics

Year: 2024

Nanohole-created carbon nanofibers for graphene-based supercapacitors

Authors: Seol, J., Lim, G.H., Lee, J., David, S., Kahng, Y.H.

Journal: Diamond and Related Materials

Year: 2024

Architectural MCM 41 was anchored to the Schiff base Co(II) complex to enhance methylene blue dye degradation and mimic activity

Authors: Palaniappan, M., Selvaraj, D., Kandasamy, S., Rajendran, R., Rangappan, R.

Journal: Environmental Research

Year: 2022

Influence of Kosakonia sp. on the Growth of Arachis hypogaea L. on Arid Soil

Authors: Narayanan, M., Pugazhendhi, A., David, S., Alharbi, S.A., Ma, Y.

Journal: Agronomy

Year: 2022