Munusamy Settu | Analytical Chemistry | Best Researcher Award

Dr. Munusamy Settu | Analytical Chemistry | Best Researcher Award

Chennai institute of technology, India.

Dr. S. Munusamy is a distinguished researcher and educator in the field of inorganic chemistry and nanomaterials. his academic journey began with a strong foundation in chemistry, leading to a Ph. d. from the university of madras, where he specialized in electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites. his professional career spans roles as an assistant researcher, head of the department, and currently as a research faculty member at the Centre for applied nanomaterials, Chennai institute of technology. his work focuses on nanomaterials, electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research.

Profile

Google Scholar

Early academic pursuits 🎓

His journey into the world of chemistry began with a strong foundation in the subject during his undergraduate studies at Thiruvalluvar university. with a keen interest in exploring the principles of chemistry, he pursued his M. Sc. in chemistry at the prestigious university of madras, where he gained expertise in analytical, inorganic, organic, and physical chemistry. his academic brilliance and dedication to scientific exploration led him to further his research aspirations through a Ph. d. in inorganic chemistry (material science) at the university of madras. his doctoral research focused on electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites under the guidance of Prof. V. Narayanan.

Professional endeavors 🏛️

following his academic achievements, Dr. Munusamy embarked on a dynamic professional career dedicated to research and education. he served as an assistant researcher and later as the head of the department at shishya arts and science college, thiruvalluvar university. his work in gallium nitride-polyaniline-polypyrrole hybrid nanocomposites showcased his expertise in nanomaterials and their applications in electrochemical sensors. in 2024, he joined the chennai institute of technology as a research faculty member at the centre for applied nanomaterials, where he continues to advance research in cutting-edge material science.

Contributions and research focus 🔬

His research is deeply rooted in the synthesis and application of nanomaterials, including metal nitrides, metal oxides, metal carbides, and conducting polymers. his work spans various critical domains, such as electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research. his innovative approaches to material synthesis and application have led to significant advancements in sustainable energy and environmental chemistry, particularly in developing efficient catalysts for energy storage and conversion.

Accolades and recognition 🏆

throughout his career, Dr. Munusamy has earned recognition for his pioneering research and contributions to the field of nanomaterials. his expertise in developing hybrid nanocomposites has been instrumental in enhancing electrochemical sensing technologies. his scholarly achievements have been acknowledged through academic honors, research publications, and invitations to participate in scientific forums, reflecting his standing in the global scientific community.

Impact and influence 🌍

His research has had a profound impact on both academia and industry. his work on electrocatalysts and photocatalysts has provided valuable insights into alternative energy solutions, contributing to the advancement of sustainable technologies. as a dedicated educator, he has mentored aspiring chemists, inspiring the next generation of scientists to push the boundaries of material science and nanotechnology. his leadership roles in academic institutions have further solidified his influence in shaping scientific curricula and fostering research-driven learning environments.

Legacy and future contributions 🔭

as a committed researcher and educator, Dr. Munusamy continues to explore new frontiers in nanomaterial science. his ongoing work at the chennai institute of technology aims to develop innovative materials with enhanced efficiency for energy storage and environmental applications. his legacy is marked by his relentless pursuit of knowledge and his dedication to scientific excellence. looking ahead, he envisions expanding his research into interdisciplinary collaborations, furthering the impact of nanomaterials in solving global challenges.

Publication

  • Doping of Co into V₂O₅ nanoparticles enhances photodegradation of methylene blue
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2014

 

  • MnWO₄ nanocapsules: synthesis, characterization and its electrochemical sensing property
    Authors: S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, …
    Year: 2015

 

  • Nanomolar determination of 4-nitrophenol based on a poly (methylene blue)-modified glassy carbon electrode
    Authors: K. Giribabu, R. Suresh, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2013

 

  • New electrochemical sensor based on Ni-doped V₂O₅ nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, S. Munusamy, …
    Year: 2014

 

  • Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties
    Authors: S. Munusamy, K. Bhakyaraj, L. Vijayalakshmi, A. Stephen, V. Narayanan
    Year: 2014

 

  • Simultaneous determination of paracetamol and 4-aminophenol based on poly (chromium Schiff base complex) modified electrode at nanomolar levels
    Authors: S.P. Kumar, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, …
    Year: 2016

 

  • Synthesis and characterization of chromium (III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol
    Authors: S.P. Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2015

 

  • A voltammetric biosensor based on poly (o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2018

 

  • Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property
    Authors: V. Sivakumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2014

 

  • Fabrication of neurotransmitter dopamine electrochemical sensor based on poly (o-anisidine)/CNTs nanocomposite
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2016

Aadarsh Parashar | Analytical Chemistry | Best Researcher Award

Mr. Aadarsh Parashar | Analytical Chemistry | Best Researcher Award

Colorado School of Mines, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Aadarsh Parashar began his academic journey at the Indian Institute of Technology Bombay, where he pursued a Bachelor and Master of Technology in Energy Science and Engineering. With a commendable GPA of 8.69/10.00, he built a strong foundation in energy systems, computational modeling, and experimental research. His academic excellence led him to further his studies at the Colorado School of Mines, where he is currently a Ph.D. candidate in Mechanical Engineering with a perfect GPA of 4.0/4.0. Expected to graduate in August 2025, he has focused his research on reversible fuel cell technology and hydrogen systems, striving to innovate clean energy solutions.

🏭 Professional Endeavors

Aadarsh has a rich professional background, having worked with esteemed institutions and companies. During his time as a Research Associate at IIT Bombay, he transitioned complex algorithms from C++ to Python for electrode optimization, improving computational efficiency. He also conducted numerical studies on microstructure characterization for better material design. As a Summer Intern at Cummins India Limited, he contributed to sustainable mobility by performing life cycle analysis of Li-ion batteries and integrating MATLAB Simulink models to optimize fuel cell-battery hybrid vehicles. Currently, as a Graduate Researcher at Colorado School of Mines, he has led groundbreaking projects in reversible solid oxide fuel cells (rSOFCs), developing high-temperature, high-pressure systems and collaborating on DOE-funded projects to validate system performance.

🔬 Contributions and Research Focus

Aadarsh’s research is centered around hydrogen production and reversible fuel cell technology. He successfully designed and constructed a $125,000 test facility for kW-scale reversible fuel cell experiments, pushing operational limits up to 800°C and 6.5 bar. His work has led to a breakthrough in reducing hydrogen production costs below $2/kg, a significant milestone in making hydrogen energy more commercially viable. Collaborating with industry leaders like Nexceris and Northwestern University, he has played a key role in scaling up hydrogen-based energy solutions.

🌍 Impact and Influence

His research holds great promise for the future of clean energy and grid-scale storage solutions. By improving the efficiency and economic feasibility of reversible solid oxide cell (rSOC) systems, Aadarsh’s contributions could accelerate the global transition toward sustainable hydrogen-based energy systems. His innovations in techno-economic modeling and high-fidelity validation of energy systems are critical in making renewable energy more scalable and cost-effective.

📚 Academic Citations and Publications

Aadarsh’s impactful research has been documented in renowned journals and conferences, including:

  • "Performance analysis of a 1 MW reversible solid oxide system for flexible hydrogen and electricity production" (International Journal of Hydrogen Energy, 2025).
  • "Scenarios for Hydrogen Production from a Full-Scale Reversible Solid Oxide System with Electrolyte-Supported Stacks" (Electrochemical Society Meeting Abstracts, 2023).
  • "Assessing reversible solid oxide cell systems for grid-energy storage based on H2/H2O and CH4/H2O-CO2 chemistries" (European Fuel Cell Forum, 2022).

These contributions serve as key references in the field of hydrogen energy, solidifying his standing as a thought leader in reversible fuel cell systems.

💻 Technical Skills

Aadarsh is proficient in a diverse range of software and programming tools essential for energy system modeling and simulation:

  • Programming: Python, MATLAB, C++, Bash
  • Energy System Simulation: COMSOL, gPROMS Process, LabVIEW
  • Data Analysis & Modeling: High-fidelity system validation, techno-economic analysis
  • Experimental Techniques: High-temperature and high-pressure system design, safety protocol development

His multidisciplinary expertise allows him to bridge the gap between computational modeling and real-world experimental validation, enhancing the reliability of clean energy technologies.

👨‍🏫 Teaching and Mentorship

Beyond research, Aadarsh has contributed to academic mentorship and knowledge dissemination. He has actively guided junior researchers and students, helping them develop experimental techniques and computational modeling skills. His commitment to education and research collaboration strengthens the pipeline of future engineers and scientists in the hydrogen and clean energy domain.

🚀 Legacy and Future Contributions

Aadarsh’s work is paving the way for next-generation hydrogen technologies that are both economically viable and scalable. His research has already contributed to a significant cost reduction in hydrogen production, and his future work is expected to further optimize fuel cell efficiency, durability, and grid-scale deployment. By integrating high-fidelity modeling, experimental validation, and industry collaboration, he aims to revolutionize renewable energy storage and hydrogen economy applications.

📖Notable Publications

"Performance analysis of a 1 MW reversible solid oxide system for flexible hydrogen and electricity production"

Authors: A Parashar, A Vaeth, OB Rizvandi, SL Swartz, RJ Braun

Journal: International Journal of Hydrogen Energy

Year: 2025

"Scenarios for Hydrogen Production from a Full-Scale Reversible Solid Oxide System with Electrolyte-Supported Stacks"

Authors: A Parashar, RJ Braun

Journal: Electrochemical Society Meeting Abstracts

Year: 2023

"Assessing reversible solid oxide cell systems for grid-energy storage based on H2/H2O and CH4/H2O-CO2 chemistries"

Authors: A Parashar, J Hosseinpour, E Reznicek, RJ Braun

Journal: European Fuel Cell Forum

Year: 2022