Olakunle Oluwaleye | Analytical Chemistry | Best Researcher Award -1860

Dr. Olakunle Oluwaleye | Analytical Chemistry | Best Researcher Award

Tshwane University of Technology, South Africa

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Olakunle Oluwaleye’s academic journey began with a strong foundation in physics and materials science. He completed his Ph.D. in Physics at the University of South Africa, in collaboration with NRF-iThemba Laboratory for Accelerator-Based Sciences (iThemba LABS) and the National Centre for Nano-Structured Materials at the CSIR in Pretoria. His doctoral research focused on ion beam modification of transparent conducting oxide (TCO) materials, a cutting-edge area with broad applications in spintronics, optoelectronics, sensors, and energy nanodevices.

🏢 Professional Endeavors

Dr. Oluwaleye has accumulated diverse international research and teaching experiences. He has worked as a research assistant at prestigious institutions such as Karlsruhe Institute of Technology (KIT), Germany, and SCK-CEN, Belgium, where he expanded his expertise in nanostructured materials and energy materials. Additionally, he served as a physics lecturer at the University of Johannesburg, further contributing to academic development. His international exposure has provided him with multidisciplinary experience in materials preparation, thin-film synthesis, and semiconductor physics.

🔬 Contributions and Research Focus

His Ph.D. research played a vital role in advancing ion beam implantation for tailoring the properties of TCO thin films, specifically indium tin oxide (ITO) and zinc oxide (ZnO). He explored the effects of Co+ and V+ ion implantation on these materials, proving their enhanced applicability in spin-based magnetoelectronics, optoelectronics, and energy nanodevices. His thin-film synthesis techniques involved radio frequency (RF) magnetron sputtering, while his analysis utilized cutting-edge material characterization techniques, including XRD, SEM, UV-Vis spectroscopy, PIXE, RBS, FTIR, and AFM.

🌍 Impact and Influence

Dr. Oluwaleye has presented his research at multiple prestigious international conferences in India, China, Italy, and the USA, receiving the best presentation award at the International Centre for Theoretical Physics (ICTP) in Italy. His contributions to nanotechnology and materials science have positioned him as a respected figure in energy materials research, with his work cited in international peer-reviewed journals.

📚 Academic Citations and Publications

During his Ph.D. studies, Dr. Oluwaleye published two research articles in internationally recognized peer-reviewed journals. His research continues to gain citations, reflecting its significant impact on materials science and nanotechnology.

🛠️ Technical Skills

Dr. Oluwaleye possesses extensive expertise in a range of scientific and computational tools, including:

  • Thin-film deposition techniques (RF magnetron sputtering)
  • Material characterization methods (VSM, XRD, UV-Vis, SEM, AFM, PIXE, RBS, FTIR, EDX)
  • Material simulation software (SRIM/TRIM Monte Carlo Code)
  • Programming and computing skills (Linux/UNIX environment)

🎓 Teaching Experience

With a passion for education, Dr. Oluwaleye served as a physics lecturer at the University of Johannesburg. His strong mentorship and research expertise have contributed to shaping the next generation of scientists in materials science and nanotechnology.

🚀 Legacy and Future Contributions

Dr. Oluwaleye’s future research aims to push the boundaries of materials innovation, focusing on energy materials, hydrogen storage, nanostructures, and materials modification. His continued work in thin-film synthesis and semiconductor materials will contribute to advancements in sustainable energy and next-generation nanodevices.

📖Notable Publications

  1. Effects of Induced Structural Modification on Properties of V+ Ion-Implanted RF—Magnetron Sputtering Deposited ZnO Thin Films of Thickness 120 nm on Borosilicate Glass Substrates

    • Authors: Olakunle Oluwaleye, Bonex Mwakikunga, Joseph Asante
    • Journal: Nanomaterials
    • Year: 2025
  2. Studies of Lattice Structure, Electrical Properties, Thermal and Chemical Stability of Cobalt Ion Implanted Indium Tin Oxide (ITO) Thin Films on Polymer Substrates

    • Authors: Olakunle Oluwaleye
    • Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
    • Year: 2019
  3. Investigation of Structural and Magnetic Properties of Co+ Ion Implanted Indium Tin Oxide Thin Films on Polyethylene Terephthalate (C10H8O4)n Substrates by 100 keV Ions

    • Authors: Olakunle Oluwaleye
    • Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
    • Year: 2019
  4. Analysis of the Spatial and Spectral Neutron Distribution of Various Conceptual Core Designs with Aim of Optimizing SAFARI-1 Research Reactor

    • Authors: Olakunle Oluwaleye
    • Journal: Proceedings of the South African Institute of Physics 2013
    • Year: 2014

Robert Hendricks | Analytical Chemistry | Best Researcher Award

Mr. Robert Hendricks | Analytical Chemistry | Best Researcher Award

Genentech, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Robert Hendricks pursued his Bachelor of Science in Biology with a Minor in English at California State Polytechnic University, Humboldt, graduating in December 1995. His academic background provided a strong foundation in biological sciences while also honing his communication and analytical skills through English studies.

💼 Professional Endeavors

Hendricks has had a distinguished career at Genentech, a leading biotechnology company in the United States. His expertise spans technology development, specifically in bioanalytical assays and laboratory information management systems (LIMS). His contributions to Watson LIMS have played a crucial role in optimizing laboratory workflows and data management.

🚀 Contributions and Research Focus

Hendricks has been deeply involved in Watson LIMS technology development at Genentech. His contributions include:

  • Serving as a core team member of the BioAnalytical Watson LIMS evaluation and implementation team from 2000 to 2003, later taking on a leadership role in 2003+.
  • Leading the BioAnalytical Watson LIMS 7.2 team and representing BioAnalytical Assays in the cross-functional Watson LIMS 7.2 team.
  • Designing and implementing a comprehensive training program for Watson LIMS users.
  • Authoring the Genentech Watson LIMS user manual, ensuring standardized and efficient usage across teams.

🌎 Impact and Influence

Through his leadership and technical expertise, Hendricks has influenced laboratory data management and automation at Genentech, contributing to increased efficiency, accuracy, and compliance in bioanalytical assays. His work in Watson LIMS has streamlined laboratory operations, impacting drug development and quality control processes.

📚 Academic Citations

While his primary focus has been in technology development and implementation, Hendricks’ contributions to Watson LIMS have likely influenced various scientific publications, training materials, and industry best practices in laboratory information management.

🛠️ Technical Skills

Hendricks has demonstrated proficiency in LIMS technology, bioanalytical assay workflows, and laboratory automation. His skill set includes:

  • Watson LIMS evaluation, implementation, and training
  • Technical documentation and user manual development
  • Cross-functional team leadership and collaboration

🎓 Teaching Experience

A key aspect of Hendricks’ contribution has been in training and education within Genentech. He developed and delivered Watson LIMS training courses for BioAnalytical Assays, ensuring that laboratory personnel were well-equipped to utilize the system effectively.

🌟 Legacy and Future Contributions

Robert Hendricks’ work in Watson LIMS technology has left a lasting impact on laboratory automation and data management at Genentech. His expertise has paved the way for future innovations in bioanalytical workflows. Moving forward, his contributions in LIMS training and implementation will continue to shape biotechnology and pharmaceutical research, ensuring efficiency, compliance, and technological advancement.

📖Notable Publications

  • Addressing Clinical Challenges in Aberrant Pharmacokinetics of Biologic Therapeutic Drugs: Investigating Sample Processing Procedure in the Immunoassays

    • Authors: Y.W. Chen, O. Davenport, N. Yu, R.T. Hendricks, Y. Song
    • Journal: AAPS Journal
    • Year: 2025
  • Cross validation of pharmacokinetic bioanalytical methods: Experimental and statistical design

    • Authors: I. Nijem, R.J. Elliott, J. Brumm, B. Wang, P.Y. Siguenza
    • Journal: Journal of Pharmaceutical and Biomedical Analysis
    • Year: 2025
  • Author Correction: Anti-TIGIT antibody improves PD-L1 blockade through myeloid and Treg cells (Nature, 10.1038/s41586-024-07121-9)

    • Authors: X. Guan, R. Hu, Y. Choi, R.J. Johnston, N.S. Patil
    • Journal: Nature
    • Year: 2024

Rotan Kumar Saha | Analytical Techniques | Best Researcher Award

Mr. Rotan Kumar Saha | Analytical Techniques | Best Researcher Award

Dhaka University of Engineering and Technology (DUET), Bangladesh

👨‍🎓Profiles

🎓 Academic and Professional Background

Rotan Kumar Saha is a Lecturer in the Department of Industrial & Production Engineering (IPE) at Dhaka University of Engineering & Technology (DUET), Gazipur, Bangladesh. He holds an M.Sc. in Mechanical Engineering with a perfect CGPA of 4.00, demonstrating his strong academic foundation and dedication to excellence. His expertise spans multiple fields, including additive manufacturing, 3D printing, lean manufacturing, advanced manufacturing, and Lean Six Sigma. As a researcher, he actively engages in various projects that contribute to industrial and academic advancements, particularly in the areas of process optimization and smart manufacturing.

🔬 Research and Innovations

Rotan Kumar Saha has been actively involved in several research and industrial projects, making significant contributions to the fields of manufacturing and materials science. His research portfolio includes 07 completed or ongoing research projects, demonstrating his commitment to innovative exploration. Additionally, he has published 02 journal papers in reputed SCI and Scopus-indexed journals, reinforcing his growing academic influence. He has also collaborated on 04 research projects with various academic and industry partners, enhancing interdisciplinary research efforts. Furthermore, his expertise extends to consultancy and industry projects, with 01 completed project showcasing his ability to apply theoretical knowledge to practical industrial applications.

🛠️ Areas of Research

Mr. Saha’s research primarily focuses on advanced manufacturing processes, materials science, and optimization techniques. His work in 3D printing and additive manufacturing includes the development of photopolymer composite materials for soft robotics, aiming to revolutionize flexible and responsive materials. In CNC machining optimization, he has explored machining parameters for titanium alloys, contributing to efficiency improvements and enhanced product performance. His work in sustainable composite materials involves the fabrication of eco-friendly composites for automotive applications, aligning with the global shift towards sustainable manufacturing. Moreover, he employs advanced process optimization methodologies, such as Response Surface Methodology (RSM) and Analysis of Variance (ANOVA), to refine manufacturing processes, reduce waste, and enhance productivity.

📊 Impact and Influence

Despite being in the early stages of his academic career, Rotan Kumar Saha’s contributions to research and industry are steadily gaining recognition. His citation index stands at 02, reflecting the initial impact of his published works. While he has yet to secure patents or publish books, his research trajectory suggests a strong potential for future breakthroughs. Although he currently holds no editorial appointments, his continuous engagement with high-impact research projects positions him as a promising academic and industry expert. His ongoing efforts in manufacturing innovations, materials optimization, and sustainable production techniques are expected to make a significant impact in the coming years.

🎓 Professional Memberships and Collaborations

Collaboration plays a vital role in Mr. Saha’s academic journey, as evidenced by his 04 research partnerships with institutions and industry leaders. His engagement in professional networks and research groups enables him to contribute meaningfully to cutting-edge manufacturing technologies. Through these collaborations, he actively shares knowledge, explores interdisciplinary approaches, and enhances the industrial applicability of his research.

🌍 Future Contributions

As an emerging researcher and educator, Rotan Kumar Saha envisions a future where his work significantly influences manufacturing efficiency, material sustainability, and industrial automation. He aims to develop novel materials for additive manufacturing, particularly for applications in robotics and healthcare. Additionally, he seeks to optimize manufacturing processes using AI-driven modeling techniques, further advancing the field of smart manufacturing. His commitment to sustainable production solutions aligns with global efforts to minimize environmental impact in industrial engineering. With his expertise in advanced manufacturing and optimization, he is poised to make substantial contributions to industrial innovation and sustainable engineering practices.

📖Notable Publications

  • Electro-mechanical analysis of nanostructured polymer matrix composite materials for 3D printing using machine learning

    • Authors: MI Hossain, MA Chowdhury, S Mahamud, RK Saha, MS Zahid, J Ferdous, …
    • Journal: Chemical Engineering Journal Advances
    • Year: 2024
  • Lean Tools and Techniques for Improving Production Performance and Waste Reduction in A Plastic Company: A Case Study

    • Authors: RK Saha, F Mahmud
    • Journal:
    • Year: 2022
  • Optimization of cutting temperature and surface roughness in CNC turning of Ti-6Al-4V alloy using response surface methodology

    • Authors: S Hossain, MZ Abedin, RK Saha, M Touhiduzzaman, MJ Hossen
    • Journal: Heliyon
    • Year: 2025
  • Investigation of the Effect of Cutting Parameters on Surface Roughness in Dry Turning of Hardened Steel Using the Taguchi Method

    • Authors: MT Rotan Kumar Saha, G Hossain, MM Rahman, NC Ray, MS Hossain, …
    • Journal: 6th Industrial Engineering and Operations Management Bangladesh Conference
    • Year: 2023
  • Reduction of Changeover Time by Using the SMED Technique with the Assistance of Lean Manufacturing Tools in a Plastic Company

    • Authors: MMU Rotan Kumar Saha, MM Rahman, MT Islam, MM Mumin
    • Journal: 6th Industrial Engineering and Operations Management Bangladesh Conference
    • Year: 2023

Munusamy Settu | Analytical Chemistry | Best Researcher Award

Dr. Munusamy Settu | Analytical Chemistry | Best Researcher Award

Chennai institute of technology, India.

Dr. S. Munusamy is a distinguished researcher and educator in the field of inorganic chemistry and nanomaterials. his academic journey began with a strong foundation in chemistry, leading to a Ph. d. from the university of madras, where he specialized in electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites. his professional career spans roles as an assistant researcher, head of the department, and currently as a research faculty member at the Centre for applied nanomaterials, Chennai institute of technology. his work focuses on nanomaterials, electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research.

Profile

Google Scholar

Early academic pursuits 🎓

His journey into the world of chemistry began with a strong foundation in the subject during his undergraduate studies at Thiruvalluvar university. with a keen interest in exploring the principles of chemistry, he pursued his M. Sc. in chemistry at the prestigious university of madras, where he gained expertise in analytical, inorganic, organic, and physical chemistry. his academic brilliance and dedication to scientific exploration led him to further his research aspirations through a Ph. d. in inorganic chemistry (material science) at the university of madras. his doctoral research focused on electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites under the guidance of Prof. V. Narayanan.

Professional endeavors 🏛️

following his academic achievements, Dr. Munusamy embarked on a dynamic professional career dedicated to research and education. he served as an assistant researcher and later as the head of the department at shishya arts and science college, thiruvalluvar university. his work in gallium nitride-polyaniline-polypyrrole hybrid nanocomposites showcased his expertise in nanomaterials and their applications in electrochemical sensors. in 2024, he joined the chennai institute of technology as a research faculty member at the centre for applied nanomaterials, where he continues to advance research in cutting-edge material science.

Contributions and research focus 🔬

His research is deeply rooted in the synthesis and application of nanomaterials, including metal nitrides, metal oxides, metal carbides, and conducting polymers. his work spans various critical domains, such as electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research. his innovative approaches to material synthesis and application have led to significant advancements in sustainable energy and environmental chemistry, particularly in developing efficient catalysts for energy storage and conversion.

Accolades and recognition 🏆

throughout his career, Dr. Munusamy has earned recognition for his pioneering research and contributions to the field of nanomaterials. his expertise in developing hybrid nanocomposites has been instrumental in enhancing electrochemical sensing technologies. his scholarly achievements have been acknowledged through academic honors, research publications, and invitations to participate in scientific forums, reflecting his standing in the global scientific community.

Impact and influence 🌍

His research has had a profound impact on both academia and industry. his work on electrocatalysts and photocatalysts has provided valuable insights into alternative energy solutions, contributing to the advancement of sustainable technologies. as a dedicated educator, he has mentored aspiring chemists, inspiring the next generation of scientists to push the boundaries of material science and nanotechnology. his leadership roles in academic institutions have further solidified his influence in shaping scientific curricula and fostering research-driven learning environments.

Legacy and future contributions 🔭

as a committed researcher and educator, Dr. Munusamy continues to explore new frontiers in nanomaterial science. his ongoing work at the chennai institute of technology aims to develop innovative materials with enhanced efficiency for energy storage and environmental applications. his legacy is marked by his relentless pursuit of knowledge and his dedication to scientific excellence. looking ahead, he envisions expanding his research into interdisciplinary collaborations, furthering the impact of nanomaterials in solving global challenges.

Publication

  • Doping of Co into V₂O₅ nanoparticles enhances photodegradation of methylene blue
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2014

 

  • MnWO₄ nanocapsules: synthesis, characterization and its electrochemical sensing property
    Authors: S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, …
    Year: 2015

 

  • Nanomolar determination of 4-nitrophenol based on a poly (methylene blue)-modified glassy carbon electrode
    Authors: K. Giribabu, R. Suresh, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2013

 

  • New electrochemical sensor based on Ni-doped V₂O₅ nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, S. Munusamy, …
    Year: 2014

 

  • Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties
    Authors: S. Munusamy, K. Bhakyaraj, L. Vijayalakshmi, A. Stephen, V. Narayanan
    Year: 2014

 

  • Simultaneous determination of paracetamol and 4-aminophenol based on poly (chromium Schiff base complex) modified electrode at nanomolar levels
    Authors: S.P. Kumar, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, …
    Year: 2016

 

  • Synthesis and characterization of chromium (III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol
    Authors: S.P. Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2015

 

  • A voltammetric biosensor based on poly (o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2018

 

  • Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property
    Authors: V. Sivakumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2014

 

  • Fabrication of neurotransmitter dopamine electrochemical sensor based on poly (o-anisidine)/CNTs nanocomposite
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2016