Rosa M. Alonso | Analytical Chemistry | Editorial Board Member

Prof. Rosa M. Alonso | Analytical Chemistry | Editorial Board Member

Professor | University of the Basque Country (UPV/EHU) | Spain

Professor Rosa M. Alonso is an accomplished analytical chemist at the University of the Basque Country (UPV/EHU), where she has served as a faculty member and has led the FARMARTEM research group. Under her leadership, FARMARTEM has been recognized as a consolidated research group by both UPV/EHU and the Basque Government, and forms part of the multidisciplinary Teaching and Research Unit (UFI 11/23) “New Technologies in Chemistry and Pharmacology Applied to Health.” Her research is dedicated to the development of advanced analytical methodologies across metabolomics, pharmaceutical analysis, environmental chemistry, and the conservation and dating of cultural heritage materials. Her group specializes in separation science, with particular emphasis on liquid and gas chromatography coupled to mass spectrometry, complemented by innovative sample preparation procedures tailored for complex matrices such as biological fluids, environmental samples, and historical documents. Professor Alonso has authored 190 scientific articles, more than half in top-quartile journals within analytical chemistry, and has delivered 190 conference presentations, including invited lectures. She has participated in 59 competitive research projects, leading 40 of them, alongside numerous industry collaborations and equipment acquisition initiatives. Professor Alonso also contributes extensively to the scientific community as a reviewer, member of the advisory boards of Current Chromatography and Separations, and evaluator for ANEP. Her excellence in teaching is evidenced by outstanding DOCENTIAZ evaluations and long-standing contributions to undergraduate, postgraduate, and international mobility programs.

Profile : Scopus 

Featured Publications

Elejalde, E., Alonso, R. M., Villarán, M. C., Díez-Gutiérrez, L., Chávarri, M., & López-de-Armentia, I. (2025). Exploring the bioavailability of red grape skin extract polyphenols: A Caco-2 cell model study. Foods, 14(13), 2253.

de la Hera, O., & Alonso, R. M. (2025). Contribution of gas chromatography–mass spectrometry (GC–MS) to the volatile organic compound profile of Vespa velutina nigrithorax larvae. Chemosensors, 13(5), 175.

de la Hera, O., Quintanilla-Casas, B., Bro, R., Fañanas, R., & Alonso, R. M. (2024). Volatile organic compound profile for the search of rejection markers in protein baits used as Vespa velutina control method. Microchemical Journal, 207, 111685.

de la Hera, O., Izaguirre, A., Rivas, A., & Alonso, R. M. (2024). QuEChERS-based method for the determination of fipronil in protein baits and Vespa velutina larvae by HPLC-DAD and GC-MS. Separations, 11(11), 317.

Hua Zhang | Analytical Chemistry | Best Researcher Award

Prof. Dr. Hua Zhang | Analytical Chemistry | Best Researcher Award

Professor | Henan Normal University | China

Professor Zhang Hua is a distinguished scholar in the fields of functional dye molecular engineering, biosensing, and advanced fluorescence technologies. With a Ph.D. from Dalian University of Technology, she has established a strong scientific presence through innovative research that bridges chemistry, materials science, and biomedicine. As a recipient of the National Excellent Young Scientist Fund and a recognized Henan Province Expert, Professor Zhang leads a university-level scientific innovation team focused on developing high-performance fluorescent dyes and imaging tools for disease diagnosis and molecular detection. Her research has significantly advanced the design and functional tuning of organic dyes for two-photon fluorescence applications, enabling highly sensitive and specific detection of key biomolecules such as nucleic acids, enzymes, and proteins. These technologies have been successfully applied to single-cell analysis, high-resolution bioimaging, and early-stage diagnostics. Professor Zhang has also driven the development of dye-based technologies that support industrial product validation, exemplified by contributions that helped a commercial product meet stringent EU REACH certification standards. Her growing portfolio of nine granted Chinese invention patents and 78 SCI-indexed publications, supported by an H-index of 27 and more than 2,669 citations, reflects her significant scholarly influence. She has completed multiple projects funded by the National Natural Science Foundation of China and is actively engaged in ongoing national-level research. Her memberships in key professional committees highlight her leadership in China’s analytical chemistry and biosensing communities. Professor Zhang’s work continues to accelerate innovation at the chemistry–biology interface, driving forward technologies that impact both scientific research and real-world biomedical applications.

Profiles : Scopus | ORCID

Featured Publications

Yang, Y. T., Liu, Y., …, & Zhang, H. (2025). H2S-activated Type-I photochemical probe: Fluorescent self-reporting for real-time monitoring of tumor ablation. Analytical Chemistry, 97(42), 23467–23476.

Han, J. N., Yang, M., …, & Zhang, H. (2025). Light-driven ESIPT-based anthraquinone analogues for synergistic fluorescent self-reporting and photodynamic therapy of malignant tumors. Journal of Medicinal Chemistry, 68(19), 20814–20826.

Liu, J., Liu, Y., Zhi, S., Yang, Y., Kim, H., Wu, D., Wang, G., James, T. D., Yoon, J., & Zhang, H. (2025). A nanotherapeutic agent for synergistic tumor therapy: Co-activation of photochemical-biological effects. Angewandte Chemie International Edition.

Niu, H. Y., Wang, S. N., …, & Zhang, H. (2025). Naphthalimide-based Type-I nano-photosensitizers for enhanced antitumor photodynamic therapy: H₂S synergistically regulates PeT and self-assembly. Angewandte Chemie International Edition. (Early Access).

Lv, C., Li, Z., Liu, W., Yang, M., Zhang, H., Fan, J., & Peng, X. (2025). An activatable chemiluminescent self-reporting sulfur dioxide donor for inflammatory response and regulation of gaseous vasodilation. ACS Sensors.

Andrea Carpentieri | Analytical Chemistry | Best Researcher Award

Prof. Andrea Carpentieri | Analytical Chemistry | Best Researcher Award

Professor | Department of Chemical Sciences Federico II, Naples IT | Italy

Prof. Andrea Carpentieri is an accomplished biochemist whose research career spans advanced biomolecular analysis, structural proteomics, and the application of biochemical methodologies to cultural heritage. Trained at the University of Naples “Federico II,” where he specialized in Biological Chemistry, his early work focused on the structural characterization of proteins, including the analysis of recombinant enzymes and the investigation of post-translational modifications such as glycosylation and phosphorylation. Through extensive experience in mass spectrometry including ESI-MS, MALDI-TOF, FT-ICR, and multidimensional chromatography. Prof. Carpentieri developed integrated strategies that combine classical biochemical techniques with cutting-edge MS/MS procedures for detailed molecular mapping. His doctoral and postdoctoral research expanded into functional proteomics, emphasizing protein–protein interactions, differential protein expression, and the identification of biomolecular changes associated with physiological and pathological processes, including apoptosis. A significant part of his international experience was gained at Boston University School of Medicine, where he investigated uncommon post-translational modifications in human protozoan parasites, particularly focusing on O-phosphoglycosylation in Entamoeba species, with implications for diagnostics and immunology. In recent years, Prof. Carpentieri has emerged as a leading figure in the field of biochemical applications for cultural heritage. His research employs high-resolution mass spectrometry to analyze biomolecules polysaccharides, lipids, proteins, and metabolites extracted from ancient artifacts, enabling the identification of original artistic materials, degradation products, and historical production techniques. These analytical insights support archaeometric investigations and inform conservation and restoration practices. Furthermore, he has contributed to the development of environmentally sustainable chemical formulations, including biocompatible adhesives, biocides, and solvents tailored for the preservation of artworks and historical objects. His interdisciplinary work bridges chemistry, archaeology, materials science, and conservation, enhanced by collaborations with Princeton University, the Courtauld Institute of Art, and several Italian cultural institutions. Through his scientific, educational, and outreach activities, Prof. Carpentieri has significantly advanced both biochemical knowledge and the protection of cultural heritage at national and international levels.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Melchiorre, M., Melchiorre, C., Moracci, M., Somma, P. I., Markiewicz, M., Stolte, S., Cerruti, P., Ruffo, F., & Carpentieri, A. (2025). Lactic acid-based compounds as green alternative solvents for cultural heritage: Application on canvas painting restoration. Journal of Cultural Heritage. Advance online publication.

Lemos, R., Pérez-Badell, Y., De Nisco, M., Cimmino, G., Gonzalez, C., Carpentieri, A., Pacifico, S., Suárez, M., & Pedatella, S. (2025). A fullerene-based selenosugar ball. European Journal of Organic Chemistry. Advance online publication.

Lemos, R., Pérez-Badell, Y., De Nisco, M., Carpentieri, A., Suárez, M., & Pedatella, S. (2024). Organic chimeras based on selenosugars, steroids, and fullerenes as potential inhibitors of the β-amyloid peptide aggregation. ChemPlusChem, 90(3), e202400404.

Amato, L., De Rosa, C., Omodei, D., Tufano, C. C., Buono, R., Tuccillo, C., Roviello, G. N., Spinelli, M., Fontanarosa, C., Papaccio, F., Camerlingo, R., Morgillo, F., Carpentieri, A., Amoresano, A., Tirino, V., Iommelli, F., Corte, C. M. D., Del Vecchio, S., & De Rosa, V. (2025). Synergistic effects of oncogene inhibition and pyruvate dehydrogenase kinase blockade in resistant NSCLC cells. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1871, 168014.

Cipolletta, B., Morelli, M., Perlingieri, C., Somma, P. I., Amoresano, A., Marino, G., & Carpentieri, A. (2024). Molecular characterization of adhesives (glue lining pastes) used in restoration. Analytical Chemistry, 96(42), 16551–16560.

 

Thulya Chakkumpulakkal Puthan Veettil | Analytical Chemistry | Women Researcher Award

Dr. Thulya Chakkumpulakkal Puthan Veettil | Analytical Chemistry | Women Researcher Award

Nutrition Care, Australia

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Thulya Chakkumpulakkal Puthan Veettil began her academic journey with a B.Sc. in Physics (2009-2012) from the University of Calicut, India, where she developed a strong foundation in materials science. She then pursued an M.Tech in Materials Science and Technology with a specialization in Nanotechnology (2013-2016) at the University of Mysore, India, securing an impressive GPA of 9.00/10.00. Her passion for advanced materials, point-of-care diagnostics, and biomedical applications led her to the Monash–Bath Global PhD Programme (2019-2024). During her Ph.D. at Monash University, Australia, and the University of Bath, UK, she conducted extensive research in disease diagnostics, microfluidic devices, antimicrobial resistance, biomaterials, and regenerative medicine.

🏛️ Professional Endeavors

Dr. Thulya has amassed significant experience in academia, research, and industry. Currently, she is serving as a Senior Quality Control Chemist at Nutrition Care Pharmaceuticals, Victoria, Australia (September 2024 – Present), where she plays a crucial role in ensuring pharmaceutical product quality and safety. Alongside her industry experience, she has an extensive teaching background as a Teaching Associate at Monash University (2021-2024), mentoring students in first-year to final-year undergraduate chemistry courses. She has also contributed to pharmacy education at the University of Bath, UK (2023-2024) and has taught master's courses in Materials Science and Engineering at Monash University. Her academic contributions are complemented by her role as a Programme Officer – Scientist B (2016-2018) at the Vikram A. Sarabhai Community Science Centre (VASCSC), India, where she was actively involved in STEM education and scientific research projects.

🔬 Research Focus and Contributions

Dr. Thulya’s research revolves around point-of-care disease diagnostics, antimicrobial resistance, biomaterials, regenerative medicine, and Process Analytical Technology (PAT). She has significantly contributed to the development of microfluidic point-of-care devices for early and precise disease detection. Her expertise in chemometrics and machine learning has enhanced diagnostic accuracy, making disease detection more efficient. She has also conducted extensive research on antimicrobial resistance (AMR) and its public health implications, contributing valuable insights into combatting drug-resistant pathogens. Additionally, her work in biomaterials and regenerative medicine has facilitated advancements in tissue engineering and drug delivery systems. Her research expertise extends to vibrational spectroscopic techniques such as Infrared (IR), Raman, UV-Vis-NIR, and Atomic Force Microscopy (AFM), which she employs for material characterization and quality control in pharmaceutical and biomedical applications.

🌍 Impact and Influence

Dr. Thulya’s research holds significant global relevance in healthcare, materials science, and pharmaceuticals. Her work in point-of-care diagnostics and antimicrobial resistance research is crucial in the fight against drug-resistant infections. By developing microfluidic devices and novel biomaterials, she is helping advance personalized medicine and regenerative therapies. Her expertise in Process Analytical Technology (PAT) methods ensures high-quality control standards in pharmaceutical manufacturing, impacting both industrial and clinical applications.

📈 Academic Citations & Recognition

As a dedicated researcher, Dr. Thulya has contributed to several peer-reviewed journal articles, book chapters, and industry reports, showcasing her commitment to advancing scientific knowledge. Her work has gained recognition in materials science, biomedical engineering, and pharmaceutical research, further solidifying her reputation as a pioneering scientist in her field.

🛠️ Technical Skills

Dr. Thulya possesses a comprehensive technical skill set, making her a versatile scientist in pharmaceutical, biomedical, and materials science research. Her expertise includes chemometrics and machine learning for data analysis, microfluidic device development for disease diagnostics, and advanced spectroscopy techniques such as Infrared (IR), Raman, UV-Vis-NIR, and AFM for material characterization. She is also skilled in Process Analytical Technology (PAT), quality control, and pharmaceutical product evaluation, ensuring compliance with industry standards.

📚 Teaching & Mentorship

With her strong academic background, Dr. Thulya has played a pivotal role as a Teaching Associate at Monash University and the University of Bath. She has mentored students at various levels, from undergraduate chemistry courses to final-year pharmacy and master's programs in materials science and engineering. Her interdisciplinary expertise allows her to provide valuable insights to students in chemistry, materials science, biomedical engineering, and pharmaceuticals. Her dedication to teaching and mentorship has contributed to the academic growth of many aspiring scientists and industry professionals.

🌟 Legacy and Future Contributions

Dr. Thulya Chakkumpulakkal Puthan Veettil continues to drive innovation in healthcare, pharmaceuticals, and materials science. Her contributions to point-of-care diagnostics, antimicrobial resistance research, biomaterials, and regenerative medicine will pave the way for new treatments, medical technologies, and quality control advancements. As she continues her journey as a Senior Quality Control Chemist in Australia’s pharmaceutical sector, she will play a key role in enhancing healthcare solutions and ensuring the safety and efficacy of medical products. Her passion for scientific discovery and translational research will undoubtedly leave a lasting impact on both academia and industry.

📖Notable Publications

  1. Evolution of vibrational biospectroscopy: multimodal techniques and miniaturisation supported by machine learning
    Authors: Mclean A., Veettil T.C.P., Giergiel M., Wood B.R.
    Journal: Vibrational Spectroscopy
    Year: 2024

  2. Revolutionising Health Science: A Historical and Future Perspective on Multimodal, Miniaturisation, and Machine Learning in Biospectroscopy
    Authors: Aaron McLean, Thulya Chakkumpulakkal Puthan Veettil, Magdalena Giergiel, Bayden R. Wood
    Journal: Preprint
    Year: 2024

  3. A Multimodal Spectroscopic Approach Combining Mid-infrared and Near-infrared for Discriminating Gram-positive and Gram-negative Bacteria
    Authors: Thulya Chakkumpulakkal Puthan Veettil, Kamila Kochan, Galain C. Williams, Kimberley Bourke, Xenia Kostoulias, Anton Y. Peleg, Dena Lyras, Paul A. De Bank, David Perez-Guaita, Bayden R. Wood
    Journal: Analytical Chemistry
    Year: 2024

  4. Illuminating Malaria: Spectroscopy’s Vital Role in Diagnosis and Research
    Authors: Bayden R. Wood, John A. Adegoke, Thulya Chakkumpulakkal Puthan Veettil, Ankit Dodla, Keith Dias, Neha Mehlawat, Callum Gassner, Victoria Stock, Sarika Joshi, Magdalena Giergiel et al.
    Journal: Spectroscopy Journal
    Year: 2024

  5. Ultrafast and Ultrasensitive Bacterial Detection in Biofluids: Leveraging Resazurin as a Visible and Fluorescent Spectroscopic Marker
    Authors: Neha Mehlawat, Thulya Chakkumpulakkal Puthan Veettil, Rosemary Sharpin, Bayden R. Wood, Tuncay Alan
    Journal: Analytical Chemistry
    Year: 2024

 

 

4o

Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Mr. Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Bangladesh University of Textiles, Bangladesh

👨‍🎓Profiles

📘 Early Academic Pursuits

The academic journey began with a B.Sc. in Mechanical Engineering from Bangladesh University of Engineering and Technology (BUET) in 2014. During this phase, research was conducted on electricity generation from compression of speed breakers, demonstrating an early interest in applied engineering solutions. Further academic advancement led to a M.S. in Mechanical Design and Production Engineering from Konkuk University, South Korea (2020-2022), where the research focused on developing a pre-programmed microdroplet generator for controlling chemical concentrations. Currently, pursuing a Ph.D. in Electrical Engineering at Pennsylvania State University (2022-2026), integrating Recombinase Polymerase Amplification (RPA) with nanopore sensing for point-of-care disease detection.

🏆 Professional Endeavors

With over six years of teaching and research experience, the professional journey includes roles as Lecturer and Assistant Professor at Bangladesh University of Textiles (BUTEX) and BGMEA University of Fashion & Technology (BUFT) from 2014 to 2020. Transitioning into the research domain, positions were held as a Graduate Research Assistant at Konkuk University (2020-2022) and Pennsylvania State University (2022-Present). Recently, appointed as a Visiting Scholar at Indiana University, Bloomington (2025-Present), further broadening the academic and research exposure.

🔬 Contributions and Research Focus

A strong research background in point-of-care (POC) devices, disease diagnosis, and sensor technology has led to significant contributions in designing microfluidic devices and nanopore sensors. Proficiency in biochemical reaction methodologies, including Polymerase Chain Reaction (PCR), Recombinase Polymerase Amplification (RPA), Loop-mediated Isothermal Amplification (LAMP), and CRISPR/Cas12, has played a crucial role in developing diagnostic tools for infectious diseases like Monkeypox, SARS-COVID, Cowpox, and HIV.

🌍 Impact and Influence

The research has had a profound impact on healthcare and diagnostic technologies, especially in early detection methods for infectious diseases. The work in integrating machine learning algorithms with sensor-based diagnostics has pushed the boundaries of automation and accuracy in medical testing. The interdisciplinary nature of the research—bridging mechanical design, electrical engineering, and biotechnology—positions it as a key contributor to next-generation disease detection systems.

📊 Academic Citations & Publications

With a growing influence in the academic world, the research work has been recognized with 67 citations, 18 published papers, and 6 conference and poster presentations. The continuous contribution to high-impact journals and international conferences highlights the commitment to advancing knowledge in biomedical engineering and sensor technology.

🛠️ Technical Skills

Expertise spans across instrumentation, fabrication, and analysis, including hands-on experience with: 3D Printing: Asiga UV Max X43, Ultimaker 3.0, Laser Systems: Universal Laser Systems, Microscopy: Optical Microscopes, Nikon Ti U Inverted Camera, pco.edge 5.5, Sensors & Electronics: Pressure Sensors (PX-309 series, Eve flow series), Axopatch 200b, Molecular Diagnostic Tools: Thermal Cycler (BIORAD T100), Plasma Treatment Machines, Software & Programming: MATLAB, Python, and Machine Learning Algorithms.

🎓 Teaching Experience

With over six years of teaching experience, expertise has been shared in Mechanical Engineering, Engineering Drawing, Machine Design, MATLAB, and Python programming with undergraduate students. The ability to bridge theoretical knowledge with hands-on applications has benefited students in engineering and research domains.

🌱 Legacy and Future Contributions

Looking ahead, the focus remains on developing innovative diagnostic devices that are cost-effective, rapid, and highly accurate for real-world applications. The integration of machine learning with nanopore sensors will continue to be a significant area of exploration. Additionally, mentoring future researchers and students in interdisciplinary fields will be an integral part of academic and professional contributions.

📖Notable Publications

Sensitive and specific CRISPR-Cas12a assisted nanopore with RPA for Monkeypox detection
Authors: MA Ahamed, MAU Khalid, M Dong, AJ Politza, Z Zhang, A Kshirsagar, ...
Journal: Biosensors and Bioelectronics 246, 115866
Year: 2024

Electricity generation from speed breaker by air compression method using wells turbine
Authors: MA Ahamed, MI Reza, M Al-Amin
Journal: Journal of Advanced Engineering and Computation 4 (2), 140-148
Year: 2020

Pre-programmed microdroplet generator to control wide-ranging chemical concentrations
Authors: MA Ahamed, G Kim, Z Li, SJ Kim
Journal: Analytica Chimica Acta 1236, 340587
Year: 2022

Functionalized Cellulose for Textile Organic Pollutant Treatment: a Comprehensive Review
Authors: MM Rashid, N Abir, SAB Kamal, M Al-Amin, MA Ahamed, MT Islam, ...
Journal: Water Conservation Science and Engineering 9 (11)
Year: 2024

A Portable Centrifuge for Universal Nucleic Acid Extraction at the Point-of-Care
Authors: AJ Politza, T Liu, A Kshirsagar, M Dong, MA Ahamed, W Guan
Journal: Available at SSRN 4781228
Year: 2024

Shaoqing Zhu | Pharmaceutical Analysis | Best Researcher Award -1443

Mr. Shaoqing Zhu | Pharmaceutical Analysis | Best Researcher Award

Zhenjiang College, China

👨‍🎓Profile

🎓 Early Academic Pursuits

Shaoqing Zhu completed a Bachelor's Degree in Traditional Chinese Medicine (TCM) at Nanjing University of Chinese Medicine in 2014. Building upon this foundation, He pursued and achieved a Doctorate in TCM at the same institution in 2020, establishing a strong base in traditional Chinese medicinal practices.

💼 Professional Endeavors

Currently a Lecturer and Director at the Zhenjiang Key Laboratory of Functional Chemistry at Zhenjiang College, His professional role includes responsibilities in education, research, and laboratory leadership. Notably, He was selected for the "169 Project" for young academic and technical talents in Zhenjiang City, along with recognition in the Young Scientific and Technological Talent Support Project, underscoring His influence and potential in the scientific field.

🔬 Contributions and Research Focus

His research spans post-harvest processing and preparation of TCM, uncovering pharmacological foundations, and finding resourceful applications for byproducts from agricultural processes. Notably, Shaoqing has led projects funded by the Natural Science Foundation of Jiangsu Higher Education Institutions, Science and Technology Planning Projects of Zhenjiang City, and other significant research initiatives, advancing methods for medicinal material processing and quality control.

🌍 Impact and Influence

Through research on drying and processing methods for medicinal materials, Shaoqing has set benchmarks in standardization and quality control within TCM, directly influencing industrial practices. Shaoqing’s efforts have led to industry advancements, particularly in pharmaceutical development and the application of sustainable processing techniques.

📊 Academic Cites

With 13 SCI-indexed publications, Shaoqing’s work has achieved an H-index of 10 and has been cited 322 times, reflecting a strong academic presence and relevance. These publications cover influential studies in post-harvest medicinal preparation, resource utilization, and processing optimization.

🛠 Technical Skills

He has expertise in UPLC-MS/MS (Ultra Performance Liquid Chromatography coupled with Tandem Mass Spectrometry), and specializes in optimizing TCM processing techniques. He is proficient in designing and leading complex research projects that align with industry standards and is adept at translating research findings into actionable industrial improvements.

👩‍🏫 Teaching Experience

As a Lecturer, Shaoqing provides instruction and mentorship within the School of Pharmaceutical & Chemical Technology at Zhenjiang College. His teaching incorporates hands-on research experience, giving students a practical view of TCM’s pharmaceutical applications and post-harvest processing.

🏆 Legacy and Future Contributions

His work in TCM processing and pharmacology is laying the groundwork for future innovations in sustainable medicine production. With ongoing projects and collaborations, he aims to refine medicinal standards and elevate the scientific basis of TCM. Future contributions will likely expand Shaoqing's influence in TCM standardization and green processing practices, impacting both academic and industrial sectors.

📖Notable Publications

"Microbiota, metabolites and mucosal immunity as potential targets of traditional Chinese medicine for respiratory diseases based on the lung-gut crosstalk"
Authors: Wang, W., Zhu, S., Zhang, Y., Yang, H., Wu, H.
Journal: Pharmacological Research - Modern Chinese Medicine
Year: 2024

"Authentication of Asini Corii Colla and Taurus Corii Colla based on UPLC-MS/MS and the discovery of antioxidant peptides associated with the PI3K-AKT pathway"
Authors: Wang, W., Chu, L., Chen, L., Zhang, Y., Yang, H.
Journal: Natural Product Research
Year: 2023

"Multi-constituents variation in medicinal crops processing: Investigation of nine cycles of steam-sun drying as the processing method for the rhizome of Polygonatum cyrtonema"
Authors: Zhu, S., Liu, P., Wu, W., Wang, W., Duan, J.-A.
Journal: Journal of Pharmaceutical and Biomedical Analysis
Year: 2022

"Study on modern drying processing method for Trichosanthis Pericarpium based on multi-bioactive constituents"
Authors: Zhang, H.-Q., Liu, P., Qian, D.-W., Li, H.-W., Duan, J.-A.
Journal: Chinese Traditional and Herbal Drugs
Year: 2020

"Comparative analysis of nucleosides, nucleobases, and amino acids in different parts of Angelicae Sinensis Radix by ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry"
Authors: Qu, C., Yan, H., Zhu, S.-Q., Qian, D.-W., Duan, J.-A.
Journal: Journal of Separation Science
Year: 2019

"Modelling of the Moisture Dynamic Process and Effects on Multiple Functional Components of Gardenia jasminoides Ellis with Different Drying Methods"

Authors: Wang, X.-H., Zhu, S.-Q., Gu, W., Zhou, C., Wang, F.
Journal: Science and Technology of Food Industry
Year: 2019

"Drying processing method for Zingiberis Rhizoma based on multiple bioactive constituents"

Authors: Li, P.-H., Wu, Q.-N., Yan, H., Huang, S.-L., Wang, G.-Q.
Journal: Chinese Traditional and Herbal Drugs
Year: 2018